# Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

## /!\ REMINDERS

■Product information in this catalog is as of October 2008. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,( automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel"). It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.
- Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations," and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

Should you have any question or inquiry on this matter, please contact our sales staff.

# **積層ハイロスインダクタ** MULTILAYER FERRITE CHIP BEADS **BK SERIES**

OPERATING TEMP. -55~+125°C











- \*BK0603, BK1005は除く
- \* Except for BK0603, BK1005

#### 特長 FEATURES

- ·Ag内部導体を使用した磁気シールド構造により、発熱やクロストークが小 さい
- ·GND不要のため、パターン設計上の自由度が大きい
- ・ノイズ対策のため様々なバリエーションとインピーダンスをラインナップ
  - HS: XL成分を抑え、(デジタル波形のオーバーシュート等)波形品位の低下 を抑制
  - HM: 20MHz以上で急峻に増大するZ特性により、100MHz~300MHz帯 の輻射ノイズに適用(映像信号廻りに効果的)
  - LL: Zの立ち上がりを高周波域とした設計により、200MHz~500MHzの ノイズ対策に適用
  - LM:200MHz近傍のノイズ対策に最適。より高い減衰効果
  - HW: シリーズ中最もXL成分を抑えた設計により、波形品位低下の抑止と 共に高周波域での減衰をも確保
  - TS: 直流抵抗低減化設計により、LSI電源廻りでのノイズ対策に最適

- · Internal silver printed layer creates a closed circuit which acts as a magnetic shield minimizing heat generation and crosstalk
- ·No need for grounding provides greater circuit design flexibility.
- · Several material types and a broad range of impedance values provide noise countermeasures for various applications.
- HS : Suppresses the XL component. Helps stop the reduction of the waveform integrity (digital wave-form overshoot, etc.)
- HM Increases the Z characteristic sharply above 20MHz and is applicable for radiated noise in the 100MHz~300MHz range. Especially effective on video signal lines.
- LL : Designed as a noise countermeasure for the 200MHz~500MHz range where the rise of the Z component is in the high frequency area.
- Intended for noise suppression around 200MHz. Effectively increases
- HW: The best material in the BK Series to suppress the XL component and stop the reduction of the wave-form integrity while maintaining attenuation in the high frequency area.
- TS: Reduced DC resistance version for noise countermeasures around LSI power supplies.

#### **APPLICATIONS**

- ・パソコン、デジタルスチルカメラ等の情報機器・デジタル機器のクロックライ ン、一般信号ラインに於ける高調波ノイズ対策
- ・パソコン、プリンタ等のインターフェイス、ハーネス接続部での輻射ノイズ及 びイミュニティ対策
- ・ビデオ、ムービー等のAV機器に於けるノイズ対策
- ・PDC、PHS等の移動体通信機器の回路間の干渉防止
- ・磁気シールド構造による小型化メリットを生かし、LSI電源供給ラインのノイ ズ防止フィルタ用途に最適(TS)
- · High frequency noise countermeasure in personal computers, digital cameras and other information system products. For use on digital product clock lines and general signal lines.
- Radiated noise suppression in computer or printer interfaces and harness connectors.
- · Noise suppression in video and other AV products.
- Prevents interference between circuits in cellular phones (PHS, PDC, etc.)
- · Due to the closed internal circuit which acts as a magnetic shield, the TS material is extremely effective as a noise filter on LSI power supply lines where downsizing of components is needed.

#### 形名表記法 **ORDERING CODE**

1005 (0402

1608 (0603)

2125 (0805)

形式 **積層ハイロスインダクタ** BK

形状寸法 (L×W) [mm] 0603 (0201) 0.6×0.3

 $1.0 \times 0.5$ 

1.6×0.8

2.0×1.25

材質記号

HW HS НМ 材質によりインピー ダンス特性が異なる LM LL TS

公称インピーダンス [Ω] 例 150 15 101 100 102 1000

特性 標準品

当社管理記号 標準品

包装 リールテーピング

| В | K | , 1 | 6 | 0 | 8 | Н | S | 1 | 2 | , 1 | _ | Т |  |
|---|---|-----|---|---|---|---|---|---|---|-----|---|---|--|
|   |   |     |   |   |   |   |   |   |   |     |   |   |  |
|   |   |     |   | 2 |   |   |   |   | 4 |     | 5 | 6 |  |

BK Multilayer Ferrite Chip Beads

External Dimensions (L×W) (mm) 0603 (0201) 0.6×0.3 1005 (0402  $1.0 \times 0.5$ 1608 (0603  $1.6 \times 0.8$ 2125 (0805) 2.0×1.25

Material

HW HS Refer to impedance НМ curves for material LM differences LL TS

Impedance  $(\Omega)$ example 150 15 101 100 102 1000

Characteristics Standard Products Internal code

△ Standard Products △=Blank Space

Packaging Tape & Reel

#### 外形寸法 EXTERNAL DIMENSIONS



| Type   | L                           | W                 | Т                 | е                 |
|--------|-----------------------------|-------------------|-------------------|-------------------|
| BK0603 | 0.60±0.03                   | $0.30 \pm 0.03$   | 0.30±0.03         | 0.15±0.05         |
| (0201) | (0.024±0.001)               | (0.012±0.001)     | (0.012±0.001)     | (0.006±0.002)     |
| BK1005 | 1.00±0.05                   | 0.50±0.05         | 0.50±0.05         | 0.25±0.10         |
| (0402) | $(0.039\pm0.002)$           | $(0.020\pm0.002)$ | $(0.020\pm0.002)$ | (0.010±0.004)     |
| BK1608 | 1.6±0.15                    | 0.8±0.15          | 0.8±0.15          | 0.3±0.2           |
| (0603) | $(0.063\pm0.006)$           | $(0.031\pm0.006)$ | $(0.031\pm0.006)$ | (0.012±0.008)     |
|        | 2.0 +0.3                    | 1.25±0.2          | 0.85±0.2          | 0.5±0.3           |
| BK2125 |                             |                   | 1.25±0.2          |                   |
| (0805) | $(0.079^{+0.012}_{-0.004})$ | $(0.049\pm0.008)$ | (0.033±0.008)     | $(0.020\pm0.012)$ |
|        |                             |                   | (0.049±0.008)     |                   |
|        |                             |                   |                   | :+ : (:           |

Unit: mm (inch)

#### 概略バリエーション AVAILABLE MATERIALS

#### BK0603







I max=200~500mA

I max=200mA

I max=100~200mA

#### BK1005











I max=300~500mA

I max=300~1000mA

I max=150~300mA

I max=250~500mA

# HR type

#### BK1608











I max=300~600mA

I max=300~1500mA

I max=200~350mA

I max=150~500mA

I max=150~500mA

セレクションガイド











▼ P.14





#### 概略バリエーション AVAILABLE MATERIALS

#### BK1608 -



BK2125 -



#### BK0603

| 形名             | EHS<br>(Environmental | インピーダンス<br>Impedance | 測定周波数<br>Measuring | 直流抵抗<br>DC<br>resistance | 定格電流<br>Rated current | 厚み<br>Thickness |
|----------------|-----------------------|----------------------|--------------------|--------------------------|-----------------------|-----------------|
| Ordering code  | Hazardous             | (Ω)                  | frequency          | (Ω)                      | (mA)                  | (mm)            |
|                | Substances)           | ±25%                 | (MHz)              | (max.)                   | (max.)                | (inch)          |
| BK 0603 HS 220 | RoHS                  | 22                   |                    | 0.065                    | 500                   |                 |
| BK 0603 HS 330 | RoHS                  | 33                   |                    | 0.070                    | 500                   |                 |
| BK 0603 HS 800 | RoHS                  | 80                   |                    | 0.40                     | 200                   |                 |
| BK 0603 HS 121 | RoHS                  | 120                  |                    | 0.45                     | 200                   |                 |
| BK 0603 HS 241 | RoHS                  | 240                  |                    | 0.65                     | 200                   |                 |
| BK 0603 HS 601 | RoHS                  | 600                  |                    | 1.20                     | 150                   |                 |
| BK 0603 HM 600 | RoHS                  | 60                   |                    | 0.25                     | 200                   |                 |
| BK 0603 HM 121 | RoHS                  | 120                  | 100                | 0.40                     | 200                   | $0.30 \pm 0.03$ |
| BK 0603 HM 241 | RoHS                  | 240                  |                    | 0.80                     | 200                   | (0.012±0.001)   |
| BK 0603 HM 471 | RoHS                  | 470                  |                    | 1.05                     | 100                   |                 |
| BK 0603 LL 100 | RoHS                  | 10                   |                    | 0.25                     | 200                   |                 |
| BK 0603 LL 220 | RoHS                  | 22                   |                    | 0.45                     | 200                   |                 |
| BK 0603 LL 330 | RoHS                  | 33                   |                    | 0.55                     | 150                   |                 |
| BK 0603 LL 470 | RoHS                  | 47                   |                    | 0.70                     | 150                   |                 |
| BK 0603 LL 560 | RoHS                  | 56                   |                    | 1.00                     | 100                   |                 |
| BK 0603 LL 800 | RoHS                  | 80                   |                    | 1.30                     | 100                   |                 |
| BK 0603 LL 121 | RoHS                  | 120                  |                    | 1.50                     | 100                   |                 |

#### BK1005

| BK1005 ————    |                |           |           |            |               |                   |
|----------------|----------------|-----------|-----------|------------|---------------|-------------------|
| 形名             | EHS            | インピーダンス   | 測定周波数     | 直流抵抗<br>DC | 定格電流          | 厚み                |
|                | (Environmental | Impedance | Measuring | resistance | Rated current | Thickness         |
| Ordering code  | Hazardous      | (Ω)       | frequency | (Ω)        | (mA)          | (mm)              |
| Ordering code  | Substances)    | ±25%      | (MHz)     | (max.)     | (max.)        | (inch)            |
| BK 1005 HW 680 | RoHS           | 68        |           | 0.17       | 500           |                   |
| BK 1005 HW 121 | RoHS           | 120       |           | 0.24       | 450           |                   |
| BK 1005 HW 241 | RoHS           | 240       |           | 0.31       | 400           |                   |
| BK 1005 HW 431 | RoHS           | 430       |           | 0.50       | 350           |                   |
| BK 1005 HW 601 | RoHS           | 600       |           | 0.60       | 300           |                   |
| BK 1005 HS 100 | RoHS           | 10        |           | 0.03       | 1000          |                   |
| BK 1005 HS 330 | RoHS           | 33        |           | 0.06       | 700           |                   |
| BK 1005 HS 680 | RoHS           | 68        |           | 0.10       | 700           |                   |
| BK 1005 HS 800 | RoHS           | 80        |           | 0.10       | 700           |                   |
| BK 1005 HS 121 | RoHS           | 120       |           | 0.20       | 500           |                   |
| BK 1005 HS 241 | RoHS           | 240       |           | 0.30       | 400           |                   |
| BK 1005 HS 431 | RoHS           | 430       |           | 0.45       | 350           |                   |
| BK 1005 HS 601 | RoHS           | 600       |           | 0.55       | 300           |                   |
| BK 1005 HS 102 | RoHS           | 1000      |           | 0.58       | 300           |                   |
| BK 1005 HR 601 | RoHS           | 600       |           | 0.60       | 300           |                   |
| BK 1005 HM 121 | RoHS           | 120       | 100       | 0.18       | 300           | $0.50 \pm 0.05$   |
| BK 1005 HM 241 | RoHS           | 240       |           | 0.30       | 300           | $(0.020\pm0.002)$ |
| BK 1005 HM 471 | RoHS           | 470       |           | 0.45       | 250           |                   |
| BK 1005 HM 601 | RoHS           | 600       |           | 0.50       | 250           |                   |
| BK 1005 HM 102 | RoHS           | 1000      |           | 0.70       | 150           |                   |
| BK 1005 LL 050 | RoHS           | 5         |           | 0.08       | 600           |                   |
| BK 1005 LL 100 | RoHS           | 10        |           | 0.11       | 500           |                   |
| BK 1005 LL 220 | RoHS           | 22        |           | 0.18       | 400           |                   |
| BK 1005 LL 330 | RoHS           | 33        |           | 0.25       | 400           |                   |
| BK 1005 LL 470 | RoHS           | 47        |           | 0.33       | 350           |                   |
| BK 1005 LL 680 | RoHS           | 68        |           | 0.31       | 400           |                   |
| BK 1005 LL 121 | RoHS           | 120       |           | 0.45       | 350           |                   |
| BK 1005 LL 181 | RoHS           | 180       |           | 0.50       | 300           |                   |
| BK 1005 LL 241 | RoHS           | 240       |           | 0.70       | 250           |                   |
| BK 1005 LM 182 | RoHS           | 1800      |           | 0.90       | 120           |                   |

221

## アイテム一覧 PART NUMBERS

BK1608 -

| 形 名            | EHS (Environmental Hazardous Substances) | インピーダンス<br>Impedance<br>〔Ω〕<br>± 25% | 測定周波数<br>Measuring<br>frequency<br>〔MHz〕 | 直流抵抗<br>DC<br>resistance<br>〔Ω〕<br>(max.) | 定格電流<br>Rated current<br>〔mA〕<br>(max.) | 厚み<br>Thickness<br>〔mm〕<br>(inch) |
|----------------|------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| BK 1608 HW 121 | RoHS                                     | 120                                  |                                          | 0.15                                      | 600                                     |                                   |
| BK 1608 HW 241 | RoHS                                     | 240                                  |                                          | 0.25                                      | 450                                     |                                   |
| BK 1608 HW 431 | RoHS                                     | 430                                  |                                          | 0.30                                      | 400                                     |                                   |
| BK 1608 HW 601 | RoHS                                     | 600                                  |                                          | 0.40                                      | 300                                     |                                   |
| BK 1608 HS 220 | RoHS                                     | 22                                   |                                          | 0.05                                      | 1500                                    |                                   |
| BK 1608 HS 330 | RoHS                                     | 33                                   |                                          | 0.08                                      | 1200                                    |                                   |
| BK 1608 HS 470 | RoHS                                     | 47                                   |                                          | 0.10                                      | 900                                     |                                   |
| BK 1608 HS 600 | RoHS                                     | 60                                   |                                          | 0.10                                      | 800                                     |                                   |
| BK 1608 HS 800 | RoHS                                     | 80                                   |                                          | 0.10                                      | 600                                     |                                   |
| BK 1608 HS 121 | RoHS                                     | 120                                  |                                          | 0.18                                      | 500                                     |                                   |
| BK 1608 HS 241 | RoHS                                     | 240                                  |                                          | 0.25                                      | 400                                     |                                   |
| BK 1608 HS 601 | RoHS                                     | 600                                  |                                          | 0.45                                      | 350                                     |                                   |
| BK 1608 HS 102 | RoHS                                     | 1000                                 |                                          | 0.60                                      | 300                                     |                                   |
| BK 1608 HM 121 | RoHS                                     | 120                                  |                                          | 0.20                                      | 350                                     |                                   |
| BK 1608 HM 241 | RoHS                                     | 240                                  |                                          | 0.35                                      | 300                                     |                                   |
| BK 1608 HM 471 | RoHS                                     | 470                                  |                                          | 0.45                                      | 250                                     |                                   |
| BK 1608 HM 601 | RoHS                                     | 600                                  |                                          | 0.60                                      | 250                                     | $0.80 \pm 0.15$                   |
| BK 1608 HM 102 | RoHS                                     | 1000                                 | 100                                      | 0.70                                      | 200                                     | $(0.031 \pm 0.006)$               |
| BK 1608 LL 300 | RoHS                                     | 30                                   |                                          | 0.20                                      | 500                                     |                                   |
| BK 1608 LL 470 | RoHS                                     | 47                                   |                                          | 0.30                                      | 400                                     |                                   |
| BK 1608 LL 560 | RoHS                                     | 56                                   |                                          | 0.30                                      | 400                                     |                                   |
| BK 1608 LL 680 | RoHS                                     | 68                                   |                                          | 0.35                                      | 300                                     |                                   |
| BK 1608 LL 121 | RoHS                                     | 120                                  |                                          | 0.50                                      | 300                                     |                                   |
| BK 1608 LL 181 | RoHS                                     | 180                                  |                                          | 0.65                                      | 250                                     |                                   |
| BK 1608 LL 241 | RoHS                                     | 240                                  |                                          | 0.80                                      | 250                                     |                                   |
| BK 1608 LL 331 | RoHS                                     | 330                                  |                                          | 0.85                                      | 200                                     |                                   |
| BK 1608 LL 431 | RoHS                                     | 430                                  |                                          | 0.85                                      | 200                                     |                                   |
| BK 1608 LL 511 | RoHS                                     | 510                                  |                                          | 0.90                                      | 200                                     |                                   |
| BK 1608 LL 681 | RoHS                                     | 680                                  |                                          | 1.00                                      | 150                                     |                                   |
| BK 1608 LM 751 | RoHS                                     | 750                                  |                                          | 0.60                                      | 300                                     |                                   |
| BK 1608 LM 152 | RoHS                                     | 1500                                 |                                          | 0.75                                      | 250                                     |                                   |
| BK 1608 LM 182 | RoHS                                     | 1800                                 |                                          | 0.85                                      | 200                                     |                                   |
| BK 1608 LM 252 | RoHS                                     | 2500                                 |                                          | 1.10                                      | 200                                     |                                   |
| BK 1608 TS 431 | RoHS                                     | 430                                  |                                          | 0.21 ± 30%                                | 400                                     |                                   |
| BK 1608 TS 601 | RoHS                                     | 600                                  |                                          | $0.27 \pm 30\%$                           | 350                                     |                                   |
| BK 1608 TS 102 | RoHS                                     | 1000                                 |                                          | $0.30 \pm 30\%$                           | 300                                     |                                   |

BK2125

|                | EHS            | インピーダンス   | 測定周波数     | 直流抵抗          | 定格電流          | 厚み                  |
|----------------|----------------|-----------|-----------|---------------|---------------|---------------------|
| /// 12         | (Environmental | Impedance | Measuring | DC            | Rated current | Thickness           |
|                | Hazardous      | (Ω)       | frequency | resistance    | (mA)          | (mm)                |
| Ordering code  | Substances)    | ± 25%     | (MHz)     | (Ω)<br>(max.) | (max.)        | (inch)              |
| BK 2125 HS 150 | RoHS           | 15        |           | 0.05          | 1200          |                     |
| BK 2125 HS 220 | RoHS           | 22        |           | 0.05          | 1200          |                     |
| BK 2125 HS 330 | RoHS           | 33        |           | 0.05          | 1200          |                     |
| BK 2125 HS 470 | RoHS           | 47        |           | 0.05          | 1000          |                     |
| BK 2125 HS 750 | RoHS           | 75        |           | 0.10          | 1000          |                     |
| BK 2125 HS 101 | RoHS           | 100       |           | 0.10          | 900           |                     |
| BK 2125 HS 121 | RoHS           | 120       |           | 0.15          | 800           |                     |
| BK 2125 HS 241 | RoHS           | 240       |           | 0.20          | 600           |                     |
| BK 2125 HS 431 | RoHS           | 430       |           | 0.25          | 500           |                     |
| BK 2125 HS 601 | RoHS           | 600       |           | 0.30          | 500           |                     |
| BK 2125 HS 102 | RoHS           | 1000      | 100       | 0.40          | 300           | $0.85 \pm 0.2$      |
| BK 2125 HM 121 | RoHS           | 120       |           | 0.15          | 800           | $(0.033 \pm 0.008)$ |
| BK 2125 HM 241 | RoHS           | 240       |           | 0.20          | 600           |                     |
| BK 2125 HM 471 | RoHS           | 470       |           | 0.25          | 500           |                     |
| BK 2125 HM 601 | RoHS           | 600       |           | 0.25          | 500           |                     |
| BK 2125 HM 102 | RoHS           | 1000      |           | 0.35          | 400           |                     |
| BK 2125 LL 560 | RoHS           | 56        |           | 0.20          | 600           |                     |
| BK 2125 LL 121 | RoHS           | 120       |           | 0.30          | 400           |                     |
| BK 2125 LL 241 | RoHS           | 240       |           | 0.35          | 300           |                     |
| BK 2125 LM 751 | RoHS           | 750       |           | 0.30          | 400           |                     |
| BK 2125 LM 152 | RoHS           | 1500      |           | 0.35          | 400           | 1                   |
| BK 2125 LM 182 | RoHS           | 1800      |           | 0.45          | 300           | 1.25 ± 0.2          |
| BK 2125 LM 252 | RoHS           | 2500      |           | 0.75          | 200           | $(0.049 \pm 0.008)$ |







#### BK1608









































































#### BK2125















































#### ①最小受注単位数 Minimum Quantity ■テーピング梱包 Tape & Reel Packaging

| 形式             | 製品厚み<br>Thickness          |                    | 效量 [pcs]<br>rd Quantity  |
|----------------|----------------------------|--------------------|--------------------------|
| Туре           | [mm]<br>(inch)             | 紙テープ<br>Paper Tape | エンボステープ<br>Embossed Tape |
| CK1608(0603)   | 0.8<br>(0.031)             | 4000               | _                        |
| CK2125(0805)   | 0.85 (0.033)               | 4000               | _                        |
|                | 1.25<br>(0.049)<br>0.9     | _                  | 2000                     |
| CKP2520 (1008) | (0.035)                    | _                  | 3000                     |
| LK1005(0402)   | (0.043)<br>0.5             | 10000              | 2000                     |
| LK1608(0603)   | (0.020)<br>0.8             | 4000               | _                        |
|                | (0.031)<br>0.85            | 4000               | _                        |
| LK2125 (0805)  | (0.033)<br>1.25<br>(0.049) | -                  | 2000                     |
| HK0603 (0201)  | 0.3 (0.012)                | 15000              | _                        |
| HK1005(0402)   | 0.5<br>(0.020)             | 10000              | _                        |
| HK1608(0603)   | 0.8<br>(0.031)             | 4000               | -                        |
| HK2125(0805)   | 0.85<br>(0.033)            | _                  | 4000                     |
|                | 1.0<br>(0.039)             | _                  | 3000                     |
| HKQ0603S(0201) | 0.3<br>(0.012)             | 15000              | _                        |
| AQ105(0402)    | 0.5<br>(0.020)             | 10000              | -                        |
| BK0603(0201)   | 0.3<br>(0.012)             | 15000              | _                        |
| BK1005(0402)   | 0.5<br>(0.020)             | 10000              | _                        |
| BK1608 (0603)  | 0.8 (0.031)                | 4000               | _                        |
| BK2125(0805)   | 0.85 (0.033)               | 4000               | _                        |
|                | 1.25<br>(0.049)            | _                  | 2000                     |
| BK2010(0804)   | 0.45 (0.018)               | 4000               | _                        |
| BK3216 (1206)  | 0.8 (0.031)                | _                  | 4000                     |
| BKP0603 (0201) | 0.3 (0.012)                | 15000              | _                        |
| BKP1005(0402)  | 0.5<br>(0.020)             | 10000              | _                        |
| BKP1608(0603)  | 0.8 (0.031)                | 4000               | _                        |
| BKP2125 (0805) | 0.85<br>(0.033)            | 4000               | _                        |



#### ③テーピング寸法 Taping Dimensions

#### ・紙テープ (8mm幅) Paper tape (0.315 inches wide)



|                 | 製品厚み      | チップ               | 挿入部               | 挿入ピッチ         | テープ厚み           |  |  |
|-----------------|-----------|-------------------|-------------------|---------------|-----------------|--|--|
| 形式              | Thickness |                   | cavity            | Insertion     | Tape Thickness  |  |  |
| Type            | (mm)      | Onp               | Juvity            | Pitch         | Tupe Thiothicos |  |  |
|                 | (inch)    | Α                 | В                 | F             | T               |  |  |
| CK1608 (0603)   | 0.8       | 1.0±0.2           | 1.8±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
|                 | (0.031)   | $(0.039\pm0.008)$ | (0.071±0.008)     | (0.157±0.004) | (0.043max)      |  |  |
| CK2125 (0805)   | 0.85      | 1.5±0.2           | 2.3±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
|                 | (0.033)   | (0.059±0.008)     | (0.091±0.008)     | (0.157±0.004) | (0.043max)      |  |  |
| LK1005(0402)    | 0.5       | 0.65±0.1          | 1.15±0.1          | 2.0±0.05      | 0.8max          |  |  |
|                 | (0.020)   | (0.026±0.004)     | (0.045±0.004)     | (0.079±0.002) | (0.031max)      |  |  |
| LK1608(0603)    | 0.8       | 1.0±0.2           | 1.8±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
|                 | (0.031)   | (0.039±0.008)     | (0.071±0.008)     | (0.157±0.004) | (0.043max)      |  |  |
| LK2125(0805)    | 0.85      | 1.5±0.2           | 2.3±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
|                 | (0.033)   | (0.059±0.008)     | (0.091±0.008)     | (0.157±0.004) | (0.043max)      |  |  |
| HK0603(0201)    | 0.3       | 0.40±0.06         | $0.70\pm0.06$     | 2.0±0.05      | 0.45max         |  |  |
| 111(0003(0201)  | (0.012)   | (0.016±0.002)     | (0.028±0.002)     | (0.079±0.002) | (0.018max)      |  |  |
| HK1005 (0402)   | 0.5       | 0.65±0.1          | 1.15±0.1          | 2.0±0.05      | 0.8max          |  |  |
| 111(1003(0402)  | (0.020)   | (0.026±0.004)     | (0.045±0.004)     | (0.079±0.002) | (0.031max)      |  |  |
| HK1608 (0603)   | 0.8       | 1.0±0.2           | 1.8±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
| 111(1000(0003)  | (0.031)   | (0.039±0.008)     | $(0.071\pm0.008)$ | (0.157±0.004) | (0.043max)      |  |  |
| HKQ0603S(0201)  | 0.3       | 0.40±0.06         | $0.70\pm0.06$     | 2.0±0.05      | 0.45max         |  |  |
| HNQ00033(0201)  | (0.012)   | (0.016±0.002)     | $(0.028\pm0.002)$ | (0.079±0.002) | (0.018max)      |  |  |
| AQ105(0402)     | 0.5       | 0.75±0.1          | 1.15±0.1          | 2.0±0.05      | 0.8max          |  |  |
| AQ105(0402)     | (0.020)   | (0.030±0.004)     | (0.045±0.004)     | (0.079±0.002) | (0.031max)      |  |  |
| BK0603(0201)    | 0.3       | 0.40±0.06         | 0.70±0.06         | 2.0±0.05      | 0.45max         |  |  |
| DKU003(0201)    | (0.012)   | (0.016±0.002)     | (0.028±0.002)     | (0.079±0.002) | (0.018max)      |  |  |
| BK1005(0402)    | 0.5       | 0.65±0.1          | 1.15±0.1          | 2.0±0.05      | 0.8max          |  |  |
| DK1003(0402)    | (0.020)   | (0.026±0.004)     | (0.045±0.004)     | (0.079±0.002) | (0.031max)      |  |  |
| BK1608(0603)    | 0.8       | 1.0±0.2           | 1.8±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
| DK1000(0003)    | (0.031)   | (0.039±0.008)     | $(0.071\pm0.008)$ | (0.157±0.004) | (0.043max)      |  |  |
| BK2125(0805)    | 0.85      | 1.5±0.2           | 2.3±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
| BN2123(0003)    | (0.033)   | (0.059±0.008)     | $(0.091\pm0.008)$ | (0.157±0.004) | (0.043max)      |  |  |
| BK2010(0804)    | 0.45      | 1.2±0.1           | 2.17±0.1          | 4.0±0.1       | 0.8max          |  |  |
| DN2010(0004)    | (0.018)   | (0.047±0.004)     | (0.085±0.004)     | (0.157±0.004) | (0.031max)      |  |  |
| DI/D0000(0004)  | 0.3       | 0.40±0.06         | 0.70±0.06         | 2.0±0.05      | 0.45max         |  |  |
| BKP0603 (0201)  | (0.012)   | (0.016±0.002)     | $(0.028\pm0.002)$ | (0.079±0.002) | (0.018max)      |  |  |
| DKD400E (0.400) | 0.5       | 0.65±0.1          | 1.15±0.1          | 2.0±0.05      | 0.8max          |  |  |
| BKP1005(0402)   | (0.020)   | (0.026±0.004)     | (0.045±0.004)     | (0.079±0.002) | (0.031max)      |  |  |
| DKD4600 (0000)  | 0.8       | 1.0±0.2           | 1.8±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
| BKP1608 (0603)  | (0.031)   | (0.039±0.008)     | (0.071±0.008)     | (0.157±0.004) | (0.043max)      |  |  |
| DIVDO40E (000E) | 0.85      | 1.5±0.2           | 2.3±0.2           | 4.0±0.1       | 1.1ma x         |  |  |
| BKP2125 (0805)  | (0.033)   | (0.059±0.008)     | (0.091±0.008)     | (0.157±0.004) | (0.043max)      |  |  |

## ・エンボステープ(8mm 幅)Embossed Tape(0.312 inches wide)



| 形 式<br>Type     | 製品厚み<br>Thickness<br>〔mm〕 |               | 挿入部<br>cavity | 挿入ピッチ<br>Insertion<br>Pitch | テーフ<br>Ta<br>Thick |         |
|-----------------|---------------------------|---------------|---------------|-----------------------------|--------------------|---------|
|                 | (inch)                    | Α             | В             | F                           | K                  | Т       |
| CK2125 (0805)   | 1.25                      | 1.5±0.2       | 2.3±0.2       | 4.0±0.1                     | 2.0                | 0.3     |
|                 | (0.049)                   | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)               | (0.079)            | (0.012) |
|                 | 0.9                       |               |               |                             | 1.4                |         |
| CKP2520(1008)   | (0.035)                   | 2.3±0.1       | 2.8±0.1       | 4.0±0.1                     | (0.055)            | 0.3     |
| OKF 2320 (1000) | 1.1                       | (0.091±0.004) | (0.110±0.004) | (0.157±0.004)               | 1.7                | (0.012) |
|                 | (0.043)                   |               |               |                             | (0.067)            |         |
| LK2125(0805)    | 1.25                      | 1.5±0.2       | 2.3±0.2       | 4.0±0.1                     | 2.0                | 0.3     |
| LN2123(0003)    | (0.049)                   | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)               | (0.079)            | (0.012) |
|                 | 0.85                      |               |               |                             | 1.5                |         |
| HK2125 (0805)   | (0.033)                   | 1.5±0.2       | 2.3±0.2       | 4.0±0.1                     | (0.059)            | 0.3     |
| 11K2123 (0003)  | 1.0                       | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)               | 2.0                | (0.012) |
|                 | (0.039)                   |               |               |                             | (0.079)            |         |
| BK2125(0805)    | 1.25                      | 1.5±0.2       | 2.3±0.2       | 4.0±0.1                     | 2.0                | 0.3     |
| DNZ 123 (U0U3)  | (0.049)                   | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)               | (0.079)            | (0.012) |
| BK3216(1206)    | 0.8                       | 1.9±0.1       | 3.5±0.1       | 4.0±0.1                     | 1.4                | 0.3     |
| DN3210(1200)    | (0.031)                   | (0.075±0.004) | (0.138±0.004) | (0.157±0.004)               | (0.055)            | (0.012) |

#### ④リーダー部・空部 LEADER AND BLANK PORTION



#### ⑤リール寸法 Reel Size



#### ⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.



|                                      |                     |                       |                       |                       |                    |                      |                    |              |                     |                     | Specif                  | ied Val                 | ue                     |                   |                                                                                                                                                              |                                                                                                              |                    |                                                   |                                                   |                                                     |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|--------------------|----------------------|--------------------|--------------|---------------------|---------------------|-------------------------|-------------------------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                                 | BK0603              | BK1005                | BK1608                | BK2125                |                    | RAY<br>BK3216        | BKP0603            | BKP1005      | BKP1608             | BKP2125             | CK1608                  | CK2125                  | CKP2520                | LK1005            | LK1608                                                                                                                                                       | LK2125                                                                                                       | HK0603             | HK1005                                            | HK1608                                            | HK2125                                              | HKQ0603S                                         | AQ105                                            | Test Methods and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Operating<br>Temperature<br>Range |                     |                       | -55~-                 | -125°C                |                    |                      |                    | -55~         | +85°C               |                     |                         |                         | -40~                   | +85℃              |                                                                                                                                                              |                                                                                                              | -55~               | <br>+125℃                                         | -40~                                              | -+85°C                                              | -55~                                             | +125°C                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Storage<br>Temperature<br>Range   |                     |                       | -55~-                 | ⊦125°C                |                    |                      |                    | -55~         | +85°C               |                     |                         |                         | -40~                   | +85°C             |                                                                                                                                                              |                                                                                                              | -55~               | +125℃                                             | -40~                                              | +85°C                                               | -55~                                             | +125℃                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3. Rated Current                     | 100~<br>500mA<br>DC | 150~<br>1000mA<br>D C | 150~<br>1500mA<br>D C | 200~<br>1200mA<br>D C | 100mA<br>DC        | 100~<br>200mA<br>DC  | 1.0A<br>DC         | 1.0A<br>DC   | 1.0~<br>3.0A<br>DC  | 2.0~<br>4.0A<br>DC  | 50~<br>60mA<br>DC       | 60~<br>500mA<br>DC      | 1.1~<br>1.4<br>DC      | 10~<br>25mA<br>DC | 1~<br>50mA<br>DC                                                                                                                                             | 5~<br>300mA<br>DC                                                                                            | 60~<br>470mA<br>DC | 110~<br>300mA<br>DC                               | 150~<br>300mA<br>DC                               | 300mA<br>DC                                         | 130~<br>600mA<br>DC                              | 280~<br>710mA<br>DC                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. Impedance                         | 10~<br>600Ω<br>±25% | 10~<br>1000Ω<br>±25%  | 22~<br>2500Ω<br>±25%  | 15~<br>2500Ω<br>±25%  | 5~<br>600Ω<br>±25% | 68~<br>1000Ω<br>±25% | 22~<br>33Ω<br>±25% | 120Ω<br>±25% | 33~<br>390Ω<br>±25% | 33~<br>220Ω<br>±25% |                         |                         |                        |                   |                                                                                                                                                              |                                                                                                              |                    |                                                   |                                                   |                                                     |                                                  |                                                  | BK0603 Series: BKP0603 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring ijig:16193A  BK1005 Series: BKP1005 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring ijig:16192A, 16193A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      |                     |                       |                       |                       |                    |                      |                    |              |                     |                     |                         |                         |                        |                   |                                                                                                                                                              |                                                                                                              |                    |                                                   |                                                   |                                                     |                                                  |                                                  | BK1608, 2125 Series: BKP1608, 2125 Series: Measuring frequency:100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig:16092A or 16192A (HW)  BK2010, 3216 Series: Measuring frequency:100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig:16192A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5. Impedance                         |                     |                       |                       |                       |                    |                      |                    |              |                     |                     | 4.7~<br>10.0μH<br>:±20% | 0.1~<br>10.0μH<br>:±20% | 1.0~<br>4.7μH<br>:±20% |                   | $\begin{array}{c} 0.047 \sim \\ 33.0 \mu H \\ \pm 20\% \\ 0.10 \sim \\ 12.0 \mu H \\ \pm 10\% \\ 0 \\ 0.12 \sim \\ 2.2 \mu H \\ \pm \pm 30\% \\ \end{array}$ | $0.047$ ~ $33.0 \mu H$ : $\pm 20\%$ $0.10$ ~ $12.0 \mu H$ : $\pm 10\%$ $0$ $0.12$ ~ $2.2 \mu H$ : $\pm 30\%$ |                    | 1.0~<br>6.2nH<br>:±0.3nH<br>6.8~<br>270nH<br>:±5% | 1.0~<br>5.6nH<br>:±0.3mH<br>6.8~<br>470nH<br>:±5% | 1.0~<br>5.6nH<br>: ±0.3nH<br>6.8~<br>470nH<br>: ±5% | 0.6~<br>6.2nH<br>:±0.3mH<br>6.8~<br>22nH<br>:±5% | 1.0~<br>6.2nH<br>:±0.3nH<br>6.8~<br>15nH<br>:±5% | CK Series:  Measuring frequency: 2 to 4MHz (CK1608)  Measuring frequency: 2 to 25MHz (CK2125)  Measuring frequency: 10 to 25MHz (LK1005)  Measuring frequency: 10 to 25MHz (LK1005)  Measuring frequency: 10 to 25MHz (LK1005)  Measuring frequency: 10 to 50MHz (LK1608)  Measuring frequency: 0.4 to 50MHz (LK1608)  Measuring frequency: 0.4 to 50MHz (LK2125)  Measuring equipment, jijg:  HP4194 + 16085B + 16092A (or its equivalent)  HP4195 + 41951 + 16092A (or its equivalent)  HP4294 + 16192A  HP4291A+16193A (LK1005)  HP4285A+42841A+42842C+42851—61100  (CKP2520)  Measuring current:  Inh rms (0.047 to 4.7 µH)  0.1mA rms (5.6 to 33 µH)  HK, AQ Series: Measuring frequency:  100MHz (HK0603 + HK1005 + AQ105)  Measuring frequency:  50/100MHz (HK1608 + HK2125)  Measuring requipment, jijg:  Measuring requipment, jijg:  Measuring requipment, jijg:  HP4291A + 16197A (HK0603 - AQ105)  HP4291A + 16197A (HK0603S)  HP4291A + 16197A (HK06063S) |

<sup>\*</sup> Definition of rated current: In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type and CK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C. In the LK,HK,HKQ,and AQ Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.

|                                              | Specified Value  ARRAY  ARRAY |                        |                        |                        |                        |                        |                          |                |                          |                          |                          |                        |                       |                       |                      |                       |                          |                          |                          |                         |                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|-------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------|----------------|--------------------------|--------------------------|--------------------------|------------------------|-----------------------|-----------------------|----------------------|-----------------------|--------------------------|--------------------------|--------------------------|-------------------------|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                                         | BK0603                        | BK1005                 | BK1608                 | BK2125                 |                        | RAY<br>BK3216          |                          | BKP1005        | BKP1608                  | BKP2125                  | CK1608                   | CK2125                 | CKP2520               | LK1005                | LK1608               | LK2125                | HK0603                   | HK1005                   | HK1608                   | HK2125                  | HKQ0603S                  | AQ105                     | Test Methods and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. Q                                         |                               |                        |                        |                        | 1                      |                        |                          |                |                          |                          | 20<br>min.               | 15~20<br>min.          |                       | 10~20<br>min.         | 10~35<br>min.        | 15~50<br>min.         | 4~5<br>min.              | 8<br>min.                | 8~12<br>min.             | 10~18<br>min.           | 10~13<br>min.             | 8<br>min.                 | CK Series :<br>Measuring frequency : 2 to 4MHz (CK1608)<br>Measuring frequency : 2 to 25MHz (CK2125)                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                               |                        |                        |                        | _                      | _                      |                          |                |                          |                          |                          |                        |                       |                       |                      |                       |                          |                          |                          |                         |                           |                           | LK Series:  Measuring frequency: 10 to 25MHz (LK1005)  Measuring frequency: 1 to 50MHz (LK1008)  Measuring frequency: 0.4 to 50MHz (LK2125)  Measuring equipment, ijig:  HP4194 + 16085B + 16092A (or its equivalent)  +HP4195A+41951+16092A (or its equivalent)  +HP4294A+16192A  +HP4291A+16193A (LK1005)  Measuring current:  -1mA rms (0.047 to 4.7µH)  -0.1mA rms (5.6 to 33 µH)  HK, HKQ, AQ Series:  Measuring frequency:  100MHz (HK0603 + HK1005 - AQ105) |
|                                              |                               |                        |                        |                        |                        |                        |                          |                |                          |                          |                          |                        |                       |                       |                      |                       |                          |                          |                          |                         |                           |                           | 10UMHz (HKU803*HKU05*AU105) Measuring frequency: 50/100MHz (HK1608*HK2125) Measuring frequency: 5000MHz (HKQ0603S) Measuring equipment, jig: - HP4291A+16197A (HK0603*AQ105) - HP4291A+16193A (HK1005) - E4991A + 16197A (HKQ0603S) - HP4294A+16092A+ in-house made jig (HK1608*HK2125)                                                                                                                                                                            |
| 7. DC Resistance                             | 0.07~<br>1.50Ω<br>max.        | 0.05~<br>0.80Ω<br>max. | 0.05~<br>1.10Ω<br>max. | 0.05~<br>0.75Ω<br>max. | 0.10~<br>0.90Ω<br>max. | 0.15~<br>0.80Ω<br>max. | 0.065~<br>0.070Ω<br>max. | 0.140Ω<br>max. | 0.025~<br>0.140Ω<br>max. | 0.020~<br>0.050Ω<br>max. | 0.45~<br>0.85Ω<br>(±30%) | 0.16~<br>0.65Ω<br>max. | 0.08~<br>0.15<br>max. | 0.7~<br>1.70Ω<br>max. | 0.2~<br>2.2Ω<br>max. | 0.1~<br>1.1Ω<br>max.  | 0.11~<br>3.74Ω<br>max.   | 0.08~<br>4.8Ω<br>max.    | 0.05~<br>2.6Ω<br>max.    | 0.10~<br>1.5Ω<br>max.   | 0.06~<br>1.29Ω<br>max.    | 0.07~<br>0.45Ω<br>max.    | Measuring equipment: VOAC-7412 (made by Iwasaki Tsushinki) VOAC-7512 (made by Iwasaki Tsushinki)                                                                                                                                                                                                                                                                                                                                                                   |
| 8. Self Resonance<br>Frequency (SRF)         |                               |                        |                        |                        |                        |                        |                          |                |                          |                          | 17~<br>25MHz<br>min.     | 24~<br>235MHz<br>min.  |                       | 40~<br>180MHz<br>min. | 9~<br>260MHz<br>min. | 13~<br>320MHz<br>min. | 900~<br>10000MHz<br>min. | 400~<br>10000MHz<br>min. | 300~<br>10000MHz<br>min. | 200~<br>4000MHz<br>min. | 1900~<br>10000MHz<br>min. | 2300~<br>10000MHz<br>min. | LK Series :<br>Measuring equipment : HP4195A<br>Measuring jig : 41951+16092A<br>(or its equivalent)                                                                                                                                                                                                                                                                                                                                                                |
|                                              |                               |                        |                        |                        |                        |                        |                          |                |                          |                          |                          |                        |                       |                       |                      |                       |                          |                          |                          |                         |                           |                           | HK, HKQ, AQ Series :<br>Measuring equipment : HP8719C<br>HP8753D (HK2125)                                                                                                                                                                                                                                                                                                                                                                                          |
| Temperature     Characteristic               |                               |                        |                        |                        | _                      | _                      |                          |                |                          |                          |                          |                        | _                     | _                     |                      |                       |                          | tance cl                 |                          | :                       |                           |                           | HK, HKQ, AQ Series: Temperature range: -30 to +85°C Reference temperature: +20°C                                                                                                                                                                                                                                                                                                                                                                                   |
| 10. Resistance to<br>Flexure of<br>Substrate | No me                         | echanid                | al dam                 | age.                   |                        |                        |                          |                |                          |                          |                          |                        |                       |                       |                      |                       |                          |                          |                          |                         |                           |                           | Warp: 2mm Testing board: glass epoxy-resin substrate Thickness: 0.8mm  Board Fr.230 Warp  Joenstonst A  45  45  [Unit:mn]                                                                                                                                                                                                                                                                                                                                          |

|                   |                                                                                                            |          |         |          |                      |          |         |         |         | Specifi  | ed Valı             | ıe         |            |                     |                       |          |         |          |        |          |       |                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------|----------|---------|----------|----------------------|----------|---------|---------|---------|----------|---------------------|------------|------------|---------------------|-----------------------|----------|---------|----------|--------|----------|-------|-------------------------------------------------|
| Item              | BK0603                                                                                                     | BK1005   | BK1608  | BK2125   | ARRAY<br>BK2010 BK32 |          | BKP1005 | BKP1608 | BKP2125 | CK1608   | CK2125              | CKP2520    | LK1005     | LK1608              | LK2125                | HK0603   | HK1005  | HK1608   | HK2125 | HKQ0603S | AQ105 | Test Methods and Remarks                        |
| 11. Solderability | At leas                                                                                                    | st 75% ( | of term | inal ele | ctrode is c          | overed b | y new s | older.  |         | At leas  | t 75%               | of term    | nal ele    | ctrode i            | s cove                | red by r | new sol | der.     |        |          |       | Solder temperature : 230±5°C                    |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            |            |                     |                       |          |         |          |        |          |       | Duration: 4±1 sec.                              |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            |            |                     |                       |          |         |          |        |          |       |                                                 |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            |            |                     |                       |          |         |          |        |          |       |                                                 |
| 12. Resistance to | Appea                                                                                                      | rance    | : No si | gnificar | it abnorma           | lity.    |         |         |         | No mecl  | nanical c           | lamage.    | No         | No mech             | nanical               | No me    | chanic  | al dam   | age.   |          |       | Solder temperature : 260±5°C                    |
| Soldering         | Impedance change: Within ±30%  Remaining terminal mediantal damage. Remaining terminal electrode: 70% min. |          |         |          |                      |          |         |         |         |          |                     |            |            | min.                | Duration: 10±0.5 sec. |          |         |          |        |          |       |                                                 |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | electrod | e: 709              | 6 min.     | damage.    | Remain              | ing                   |          |         |          |        |          |       | Preheating temperature: 150 to 180°C            |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            | Remaining  | termina             | ıl                    | Induct   | ance cl | nange    |        |          |       | Preheating time: 3 min.                         |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | Inductar | nce chan            | ige        | terminal   | electro             | de :                  | Within   | ±5%     |          |        |          |       | Flux: Immersion into methanol solution with     |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | R10~4R   | -4R7: Within±10% el |            | electrode  | 70% m               | iin.                  |          |         |          |        |          |       | colophony for 3 to 5 sec.                       |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | 6R8~10   | : Within            | ±15%       | : 70% min. | Inducta             | ınce                  |          |         |          |        |          |       | Recovery: 2 to 3 hrs of recovery under          |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | CKP252   | 0:Withir            | ±30%       | Inductance | change              |                       |          |         |          |        |          |       | the standard condition after the test.          |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            | change     | 47N~4               | R7:                   |          |         |          |        |          |       | (See Note 1)                                    |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            | Within     | Within∃             | ±10%                  |          |         |          |        |          |       |                                                 |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            | ±15%       | 5R6~3               | 30:                   |          |         |          |        |          |       |                                                 |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            |            | Within∃             | ±15%                  |          |         |          |        |          |       |                                                 |
| 13. Thermal Shock | Appea                                                                                                      | rance    | : No si | gnificar | it abnorma           | lity.    |         |         |         | No       |                     | No         | No me      | chanica             | al                    | No me    | chanic  | al dam   | age.   |          |       | Conditions for 1 cycle                          |
|                   | Imped                                                                                                      | ance cl  | nange   | : With   | in ±30%              |          |         |         |         | mecha    | inical              | mechanical | damag      | je.                 |                       | Induct   | ance cl | nange    | : With | in ±10   | )%    | Step 1: Minimum operating temperature           |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | damag    | je.                 | damage.    | Induct     | ance                |                       | Qchan    | nge : V | Vithin : | £20%   |          |       | +0<br>-3 ℃ 30±3 min.                            |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | Induct   | ance                | Induc-     | chang      | e :                 |                       |          |         |          |        |          |       | Step 2 : Room temperature 2 to 3 min.           |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | change   |                     | tance      | Withir     | ±10%                |                       |          |         |          |        |          |       | Step 3 : Maximum operating temperature          |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | Within ± |                     | change:    | Qchan      | ge :                |                       |          |         |          |        |          |       | +0<br>-3 °C 30±3 min.                           |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         | Qchan    | ge :                | Within     | Withir     | ±30%                |                       |          |         |          |        |          |       | Step 4: Room temperature 2 to 3 min.            |
|                   | Within ±3 0% ±30%                                                                                          |          |         |          |                      |          |         |         |         |          |                     |            |            | Number of cycles: 5 |                       |          |         |          |        |          |       |                                                 |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            |            |                     |                       |          |         |          |        |          |       | Recovery: 2 to 3 hrs of recovery under the      |
|                   |                                                                                                            |          |         |          |                      |          |         |         |         |          |                     |            |            |                     |                       |          |         |          |        |          |       | standard condition after the test. (See Note 1) |

(Note 1) When there are questions concerning mesurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Specified Val                                                 | ue                                                  |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------|--------------------------------------------------------------------------|---------|------|------------------------|-------|--------|------------|------------|---------|---------|------------|---------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|---------------------|-----------------------|-----------------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Item                                            |                                                                          |         | Γ    |                        |       | ARI    | RAY        |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       | Test Methods and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                 | BK0603                                                                   | BK1005  | BK   | 1608 BK21              | 125   | BK2010 | DK221      | BKP0603    | BKP1005 | BKP1608 | BKP2125    | CK1608 CK2125                                                 | CKP2520                                             | LK1005                                                               | LK1608                                                                                                                                                          | LK2125                                                              | HK0603  | HK1005              | HK1608                | HK21                  | 25 HKQ0603S | AQ105 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4. Damp Heat                                    | Appear                                                                   | rance   | : N  | o signific             | cant  |        |            |            |         |         |            | No                                                            | No                                                  | No me                                                                | chani-                                                                                                                                                          | No                                                                  | No me   | chanica             | al dama               | age.                  |             |       | BBK Series :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (Steady state)                                  | Appearance : No significant abnormality.  Impedance change : Within ±30% |         |      |                        |       |        | mechanical | mechanical | cal da  |         | mechanical |                                                               |                                                     |                                                                      |                                                                                                                                                                 | in ±10%                                                             |         | Temperature: 40±2°C |                       |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 | ,                                                                        |         |      |                        |       |        |            | damage.    | damage. |         |            | damage.                                                       |                                                     |                                                                      | thin ±2                                                                                                                                                         |                                                                     |         |                     | Humidity: 90 to 95%RH |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            | -       | -       | Induct     | ance                                                          |                                                     |                                                                      | -                                                                                                                                                               |                                                                     |         |                     |                       | Duration: 500 +24 hrs |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Inductance                                                    | Inductance                                          | chang                                                                | e:                                                                                                                                                              | Inductance                                                          |         |                     |                       |                       |             |       | Recovery : 2 to 3 hrs of recovery under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | change:                                                       | change :                                            | Within                                                               |                                                                                                                                                                 | change:                                                             |         |                     |                       |                       |             |       | standard condition after the removal from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Within ±20%                                                   | Within                                              | ±10%                                                                 |                                                                                                                                                                 | Within                                                              |         |                     |                       |                       |             |       | chamber. (See Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               | ±30%                                                |                                                                      |                                                                                                                                                                 | ±20%                                                                |         |                     |                       |                       |             |       | LK, CK, CKP, HK, HKQ, AQ Series:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Q change:                                                     |                                                     | Q cha                                                                | nge:                                                                                                                                                            | Q change:                                                           |         |                     |                       |                       |             |       | Temperature: 40±2°C (LK, CK, CKPSeri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Within ±30%                                                   |                                                     | Within                                                               |                                                                                                                                                                 | Within                                                              |         |                     |                       |                       |             |       | : 60±2°C (HK, HKQ, AQ Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     | ±30%                                                                 |                                                                                                                                                                 | ±30%                                                                |         |                     |                       |                       |             |       | Humidity: 90 to 95%RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       | Duration: 500±12 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       | Recovery: 2 to 3 hrs of recovery under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       | standard condition after the removal from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       | chamber. (See Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ol> <li>Loading under<br/>Damp Heat</li> </ol> |                                                                          |         |      | o signific             |       |        |            | ity.       |         |         |            | No                                                            | No                                                  | No                                                                   | No                                                                                                                                                              | No                                                                  |         |                     | al dama               | -                     |             |       | BK Series:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                 | Impeda                                                                   | ance ch | han  | ge: With               | nin : | ±30%   | Ď          |            |         |         |            | mechanical                                                    | mechanical                                          | mechanical                                                           | mechanical                                                                                                                                                      | mechanical                                                          |         |                     |                       |                       | in ±10%     |       | Temperature: 40±2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | damage.                                                       | damage.                                             | damage.                                                              | damage.                                                                                                                                                         | damage.                                                             | Q char  | nge : Wi            | thin ±2               | 20%                   |             |       | Humidity: 90 to 95%RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     | l                                                                    |                                                                                                                                                                 | l                                                                   |         |                     |                       |                       |             |       | Duration: 500 +24 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Inductance                                                    | Induc-                                              | Induc-                                                               | Induc-                                                                                                                                                          | Induc-                                                              |         |                     |                       |                       |             |       | Recovery : 2 to 3 hrs of recovery under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | change:                                                       | tance                                               | tance                                                                | tance                                                                                                                                                           | tance                                                               |         |                     |                       |                       |             |       | standard condition after the removal from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Within ±20%                                                   | change:                                             | change:                                                              | change:                                                                                                                                                         | change:                                                             |         |                     |                       |                       |             |       | chamber. (See Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Q change:                                                     | Within ±30%                                         | Within ±10%                                                          | 0.047 to<br>12.0 μH:                                                                                                                                            | Within ±20%                                                         |         |                     |                       |                       |             |       | LK, CK, CKP, HK, HKQ, AQ Series:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | Within ±30%                                                   | ±30 /6                                              | 10%                                                                  | Within                                                                                                                                                          | 120/0                                                               |         |                     |                       |                       |             |       | Temperature: 40±2°C (LK, CK, CKPSeri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            | WILLIIII ±30 /6                                               |                                                     | Q                                                                    | ±10%                                                                                                                                                            | Q                                                                   |         |                     |                       |                       |             |       | : 60±2°C (HK, HKQ, AQ Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     | change:                                                              | 15.0 to                                                                                                                                                         | change:                                                             |         |                     |                       |                       |             |       | Humidity: 90 to 95%RH<br>Duration: 500±12 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     | Within                                                               | 33.0μH:                                                                                                                                                         | Within                                                              |         |                     |                       |                       |             |       | Recovery: 2 to 3 hrs of recovery under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     | ±30%                                                                 | Within                                                                                                                                                          | ±30%                                                                |         |                     |                       |                       |             |       | Theody cry 12 to o mis of recovery under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       | standard condition after the removal from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      | 1±15%                                                                                                                                                           |                                                                     |         |                     |                       |                       |             |       | standard condition after the removal from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      | ±15%                                                                                                                                                            |                                                                     |         |                     |                       |                       |             |       | standard condition after the removal from chamber. (See Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      | ±15%                                                                                                                                                            |                                                                     |         |                     |                       |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      |                                                                                                                                                                 |                                                                     |         |                     |                       |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      | Q                                                                                                                                                               |                                                                     |         |                     |                       |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            |            |         |         |            |                                                               |                                                     |                                                                      | Q<br>change:                                                                                                                                                    |                                                                     |         |                     |                       |                       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| i. Loading at High                              | Appear                                                                   | rance   | : No | o signific             | cant  | abno   | ormal      | ity.       |         |         |            | No                                                            | No                                                  | No                                                                   | Q<br>change:<br>Within                                                                                                                                          | No                                                                  | No me   | chanica             | al dama               | age.                  |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6. Loading at High<br>Temperature               |                                                                          |         |      | o signific<br>ge: With |       |        |            | ity.       |         |         |            | No<br>mechanical                                              | mechanical                                          | No<br>mechanical                                                     | Q change: Within ±30%                                                                                                                                           | No<br>mechanical                                                    |         |                     |                       | -                     | in ±10%     |       | chamber. (See Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            |                                                               |                                                     |                                                                      | Q change: Within ±30%                                                                                                                                           |                                                                     | Inducta | ance ch             |                       | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.                                            | mechanical<br>damage.                               | mechanical<br>damage.                                                | Q change: Within ±30% No mechanical damage.                                                                                                                     | mechanical<br>damage.                                               | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.                                            | mechanical damage.                                  | mechanical<br>damage.<br>Induc-                                      | Q change: Within ±30% No mechanical damage.                                                                                                                     | mechanical<br>damage.<br>Induc-                                     | Inducta | ance ch             | nange:                | With                  | in ±10%     |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 5. Loading at High<br>Temperature               |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical<br>damage.<br>Inductance<br>change:                | mechanical<br>damage.<br>Induc-<br>tance            | mechanical<br>damage.<br>Induc-<br>tance                             | Q change: Within ±30% No mechanical damage.                                                                                                                     | mechanical<br>damage.<br>Induc-<br>tance                            | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 Duration: 500 +2 |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.                                            | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical<br>damage.<br>Induc-<br>tance<br>change:                  | Q change: Within ±30% No mechanical damage. Inductance change:                                                                                                  | mechanical<br>damage.<br>Induc-<br>tance<br>change:                 | Inducta | ance ch             | nange:                | With                  | in ±10%     |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical<br>damage.<br>Inductance<br>change:<br>Within ±20% | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical<br>damage.<br>Induc-<br>tance<br>change:                  | Q change: Within ±30% No mechanical damage. Inductance change: 0.047 to                                                                                         | mechanical<br>damage.<br>Induc-<br>tance<br>change:                 | Inducta | ance ch             | nange:                | With                  |             |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500+24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical<br>damage.<br>Induc-<br>tance<br>change:                  | Q change: Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH:                                                                                | mechanical<br>damage.<br>Induc-<br>tance<br>change:                 | Inducta | ance ch             | nange:                | With                  | in ±10%     |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 <sup>+24</sup> / <sub>-0</sub> hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from chamber. (See Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical<br>damage.<br>Inductance<br>change:<br>Within ±20% | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%                   | Q change: Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within                                                                         | mechanical damage.  Inductance change: Within ±20%                  | Inducta | ance ch             | nange:                | With                  | nin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 <sup>+24</sup> <sub>-0</sub> hrs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1)  LK, CK, CKP, HK, HKQ, AQ Series, BKS P type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%                   | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0\mu\text{H}$ : Within $\pm 10\%$                                           | mechanical damage.  Inductance change: Within ±20%                  | Inducta | ance ch             | nange:                | With                  | nin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 <sup>+24</sup> <sub>-0</sub> hrs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1)  LK, CK, CKP, HK, HKQ, AQ Series, BKS P type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change:        | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0 \mu H$ : Within $\pm 10\%$ 15.0 to                                        | mechanical damage.  Inductance change: Within ±20%  Q change:       | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK 5 P type: Temperature: 85±2°C (LK, CK, CKPSeri :85±3°C (BK Series P type) :85±2°C (HK1608, 2125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                 |                                                                          |         |      |                        |       |        |            | vity.      |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change: Within | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0\mu\text{H}$ : Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$ :               | mechanical damage. Inductance change: Within ±20%  Q change: Within | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 $^{+24}_{-0}$ hrs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1)  LK, CK, CKP, HK, HKQ, AQ Series, BK 3 P type: Temperature: 85±2°C (LK, CK, CKPSeri :85±3°C (BK Series P type) :85±2°C (HK1608, 2125) :85±2°C (HK1005, AQ105 operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                 |                                                                          |         |      |                        |       |        |            | vity.      |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change:        | Q change: Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10% 15.0 to 33.0 µH: Within                                            | mechanical damage.  Inductance change: Within ±20%  Q change:       | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 $^{+24}_{-0}$ hrs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK: P type: Temperature: 85±2°C (LK, CK, CKPSer: 85±3°C (BK Series P type) 85±2°C (HK1608, 2125) 85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change: Within | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0\mu\text{H}$ : Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$ :               | mechanical damage. Inductance change: Within ±20%  Q change: Within | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500_7 brs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1) LK. CK, CKP, HK, HKQ, AQ Series, BK 3 P type: Temperature: 85±2°C (LK, CK , CKPSeries, 85±3°C (BK Series P type) :85±2°C (HK1608, 2125) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ060;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change: Within | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0  \mu H$ : Within $\pm 10\%$ Is 0 to $33.0  \mu H$ : Within $\pm 15\%$     | mechanical damage. Inductance change: Within ±20%  Q change: Within | Inducta | ance ch             | nange:                | With                  | iin ±10%    |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 <sup>+24</sup> / <sub>2</sub> hrs Recovery: 2 to 3 hrs of recovery under th standard condition after the removal from chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK S P type: Temperature: 85±2°C (LK, CK, CKPSeri :85±3°C (BK Series P type) :85±2°C (HK1608, 2155) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ060: AQ105 operating temperature range -55 to +17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change: Within | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0 \mu H$ : Within $\pm 10\%$ If $5.0$ to $33.0 \mu H$ : Within $\pm 15\%$ Q | mechanical damage. Inductance change: Within ±20%  Q change: Within | Inducta | ance ch             | nange:                | With                  | in ±10%     |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 + 24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK SP type: Temperature: 85±2°C (LK, CK, CKPSeri: 85±2°C (HK1608, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ060: AQ105 operating temperature range -55 to +85°C) Applied current: Rated current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                 |                                                                          |         |      |                        |       |        |            | ity.       |         |         |            | mechanical damage.  Inductance change: Within ±20%  Q change: | mechanical<br>damage.<br>Induc-<br>tance<br>change: | mechanical damage.  Inductance change: Within ±10%  Q change: Within | Q change: Within $\pm 30\%$ No mechanical damage. Inductance change: $0.047$ to $12.0  \mu H$ : Within $\pm 10\%$ Is 0 to $33.0  \mu H$ : Within $\pm 15\%$     | mechanical damage. Inductance change: Within ±20%  Q change: Within | Inducta | ance ch             | nange:                | With                  | in ±10%     |       | chamber. (See Note 1)  BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500 -0 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK S P type: Temperature: 85±2°C (LK, CK, CKPSeri :85±3°C (BK Series P type) :85±2°C (HK1608, 2125) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ0603 AQ105 operating temperature range -55 to +12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of  $20\pm2^{\circ}C$  of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1)

measurement shall be made after 48  $\pm$  2 hrs of recovery under the standard condition.

| Stages           | Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . Circuit Design | <ul> <li>◆Verification of operating environment, electrical rating and performance</li> <li>1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.</li> <li>◆Operating Current (Verification of Rated current)</li> <li>1. The operating current for inductors must always be lower than their rated values.</li> <li>2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.</li> </ul>                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2. PCB Design    | <ul> <li>◆Pattern configurations         (Design of Land-patterns)</li> <li>When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns:</li> <li>(1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.</li> <li>(2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.</li> <li>(3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns</li> </ul> | 1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown.  (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs  Land pattern  Chip inductor  W  Recommended land dimensions for wave-soldering (unit: mm)  Type  1608  2125  3216  2.0  3.2  W  0.8  1.25  1.6  A  0.8~1.0  1.0~1.4  1.8~2.5  B  0.5~0.8  0.8~1.5  0.8~1.7  C  0.6~0.8  0.9~1.2  1.2~1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | smaller than terminal electrode of chips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recommended land dimensions for reflow-soldering (unit: mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type 0603 1005 105 1608 2125 3216 2520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>ω</u> L 0.6 1.0 1.0 1.6 2.0 3.2 2.5<br><u>ω</u> W 0.3 0.5 0.6 0.8 1.25 1.6 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VV 0.0 0.0 0.0 1.20 1.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A 0.20~0.30 0.45~0.55 0.50~0.55 0.6~0.8 0.8~1.2 1.8~2.5 1.0~1.<br>B 0.20~0.30 0.40~0.50 0.30~0.40 0.6~0.8 0.8~1.2 0.6~1.5 0.6~1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 0.25~0.40 0.45~0.55 0.60~0.70 0.6~0.8 0.9~1.6 1.2~2.0 1.8~2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Excess solder can affect the ability of chips to withstand mechanical stresses.  Therefore, please take proper precautions when designing land-patterns.  Recommended land dimension for Reflow-soldering (unit: mm)  3216 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | σ <u>ω</u> L 3.2 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \( \frac{\omega}{\omega} \) \( \lambda \) \) |

|      |   | 3216    | 2010    |  |
|------|---|---------|---------|--|
| Size | L | 3.2     | 2.0     |  |
| ze   | W | 1.6     | 1.0     |  |
| a    | a | 0.7~0.9 | 0.5~0.6 |  |
| b    |   | 0.8~1.0 | 0.5~0.6 |  |
| C    | ; | 0.4~0.5 | 0.2~0.3 |  |
| C    | t | 0.8     | 0.5     |  |

| Stages       | Precautions                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         | Technical consi                           | iderations                                                                                                                                             |                                                          |                        |               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|---------------|
| 2.PCB Design |                                                                                                                                                                                                                                                                                                               | (2) Example                                                                                                                                                                                                             | es of good and bad solder                 | application                                                                                                                                            |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         | Not recommended                           | Recommended                                                                                                                                            |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                           |                                                                                                                                                        | Mixed mount-<br>ing of SMD and<br>leaded compo-<br>nents | Lead wire of component | Solder-resist |
|              |                                                                                                                                                                                                                                                                                                               | C o m p o n e n t<br>placement close<br>to the chassis                                                                                                                                                                  | Chassis Solder(for grounding)             | Solder-resist                                                                                                                                          |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               | Hand-soldering<br>of leaded<br>components<br>near mounted<br>components                                                                                                                                                 | Lead wire of component-<br>Soldering iron | Solder-resist Solder-resist                                                                                                                            |                                                          |                        |               |
|              | ◆Pattern configurations  (Inductor layout on panelized [breakaway] PC boards)  1. After inductors have been mounted on the boards.                                                                                                                                                                            | Horizontal com-<br>ponent place-<br>ment                                                                                                                                                                                |                                           | Solderresist                                                                                                                                           |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               | 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.                                            |                                           |                                                                                                                                                        |                                                          |                        |               |
|              | chips can be subjected to mechanical stresses in sub-                                                                                                                                                                                                                                                         | Item                                                                                                                                                                                                                    | Not recommended                           | Recommended                                                                                                                                            |                                                          |                        |               |
|              | sequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress. | Deflection of the board                                                                                                                                                                                                 |                                           | Position the component at a right angle to the direction of the mechanical stresses that are anticipated.                                              |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               | 1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on in ductor layout. An example below should be counted for better design. |                                           |                                                                                                                                                        |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               | Perforat                                                                                                                                                                                                                | tion                                      |                                                                                                                                                        |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         | Slit Magnitude of stree                   | B ss A>B = C>D>E                                                                                                                                       |                                                          |                        |               |
|              |                                                                                                                                                                                                                                                                                                               | chanical stre<br>The following<br>stressful: pu                                                                                                                                                                         | ess on the inductors can                  | eir perforations, the amount of me-<br>vary according to the method used.<br>order from least stressful to most<br>g, and perforation. Thus, any ideal |                                                          |                        |               |

SMD inductor layout must also consider the PCB splitting procedure.

| Stages                                   | Precautions                                                                                                                                                                                                                                                                  |                                                                                                                                                  | Technical conside                                                                                                                                                                                                                                | rations                                                                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.Considerations for automatic placement | <ul> <li>◆Adjustment of mounting machine</li> <li>1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.</li> <li>2. The maintenance and inspection of the mounter should be conducted periodically.</li> </ul>                   | on the inductor be considered (1) The lower limithe PC board (2) The pick-up p (3) To reduce the pick-up nozzle                                  | ors, causing damage. To avoid before lowering the pick-up n it of the pick-up nozzle should after correcting for deflection pressure should be adjusted by a mount of deflection of the e, supporting pins or back-up llowing diagrams show some | be adjusted to the surface level of                                                                                                                                          |
|                                          |                                                                                                                                                                                                                                                                              |                                                                                                                                                  | Improper method                                                                                                                                                                                                                                  | Proper method                                                                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                              | Single-sided mounting                                                                                                                            | chipping or cracking                                                                                                                                                                                                                             | supporting pins or back-up pins                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                                                              | Double-sided mounting                                                                                                                            | chipping                                                                                                                                                                                                                                         | supporting pins-<br>or back-up pins                                                                                                                                          |
|                                          |                                                                                                                                                                                                                                                                              | cause chipping pact on the ir the alignmen                                                                                                       | ng or cracking of the induct                                                                                                                                                                                                                     | tment of the nozzle height can<br>tors because of mechanical im-<br>monitoring of the width between<br>n, and maintenance, inspection<br>iducted periodically.               |
|                                          | ◆Selection of Adhesives  1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount | ence betwee<br>inductors ma<br>Moreover, to<br>versely affect<br>be noted in th                                                                  | n the shrinkage percentage<br>ay result in stresses on the<br>o little or too much adhesiv<br>t component placement, so the<br>application of adhesives.                                                                                         | sulation resistance. The differ-<br>of the adhesive and that of the<br>inductors and lead to cracking.<br>e applied to the board may ad-<br>the following precautions should |
|                                          | applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.                                                                                                | a. The adhesive<br>the mountin<br>b. The adhesive<br>c. The adhesive<br>d. The adhesive<br>e. The adhesive<br>f. The adhesive<br>g. The adhesive | g & solder process. should have sufficient stren should have good coating a should be used during its p should harden rapidly must not be contaminated. should have excellent insula                                                             | and thickness consistency. rescribed shelf life.                                                                                                                             |

⚠当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

| Stages                                   | Precaution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.Considerations for automatic placement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [Recommended conditions]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 0805 case sizes as examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a 0.3mm min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b 100 ~120 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c Area with no adhesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Amount of adhesives After inductors are bonded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.Soldering                              | ◆Selection of Flux  1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;  (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied.  (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.  (3) When using water-soluble flux, special care should be taken to properly clean the boards. | <ul> <li>1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor.</li> <li>1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.</li> <li>1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.</li> </ul> |
|                                          | ◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100 °C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Stages      | Precautions                                                                                                                                                                                                                                                                      | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4.Soldering | ◆And please contact us about peak temperature when you use lead-free paste.                                                                                                                                                                                                      | Recommended conditions for soldering  [Reflow soldering]  Temperature profile  Temperature  (C)  Preheating  200  Peak 260°C max  10 sec max  Peak 260°C max  Frequency  Preheating  200  Peak 260°C max  Frequency  10 sec max  Peak 260°C max  Frequency  10 sec max  Peak 260°C max  Frequency  Cardually  Cooling  Preheating  Preheating  Preheating  Preheating  Frequency  Secaranic chip components should be preheated to within 100 to 130°C of the soldering.  **Assured to be reflow soldering for 2 times. |  |  |  |
|             |                                                                                                                                                                                                                                                                                  | 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below:  2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times                                                                                                                                                                                                                                             |  |  |  |
|             |                                                                                                                                                                                                                                                                                  | as possible.  [Wave soldering]  Temperature profile  Temperature  (C)  230°C  250°C  Preheating  200  Preheating  200  Preheating  200  100  100  100  100  120 sec min  **Ceramic chip components should be preheated to within 100 to 130°C of the soldering.  **Saxwed to be wave soldering or 1 time.  **Except for reflow soldering type.                                                                                                                                                                          |  |  |  |
|             |                                                                                                                                                                                                                                                                                  | Caution  1. Make sure the inductors are preheated sufficiently.  2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C  3. Cooling after soldering should be as gradual as possible.  4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.                                                                                                                                                                            |  |  |  |
|             |                                                                                                                                                                                                                                                                                  | [Hand soldering]  Temperature profile  Temperature (*C) (Pb free soldering)  400  400  400  400  400  400  400  4                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|             |                                                                                                                                                                                                                                                                                  | Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 5.Cleaning  | ◆Cleaning conditions  1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) | The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).                                                                                                                                                                                                                                                                                                  |  |  |  |

| Stages                     | Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.Cleaning                 | Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors.  (1) Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked;  Ultrasonic output Below 20 w/& Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less |
| 6. Post cleaning processes | <ul> <li>◆Application of resin coatings, moldings, etc. to the PCB and components.</li> <li>1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance.</li> <li>2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction.</li> <li>3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors.</li> <li>The use of such resins, molding materials etc. is not recommended.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7. Handling                | <ul> <li>◆Breakaway PC boards (splitting along perforations)</li> <li>1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.</li> <li>2. Board separation should not be done manually, but by using the appropriate devices.</li> <li>◆General handling precautions</li> <li>1. Always wear static control bands to protect against ESD.</li> <li>2. Keep the inductors away from all magnets and magnetic objects.</li> <li>3. Use non-magnetic tweezers when handling inductors.</li> <li>4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded.</li> <li>5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes.</li> <li>6. Keep inductors away from items that generate magnetic fields such as speakers or coils.</li> <li>◆Mechanical considerations</li> <li>1. Be careful not to subject the inductors to excessive mechanical shocks.</li> <li>(1) If inductors are dropped on the floor or a hard surface they should not be used.</li> <li>(2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

PRECAUTIONS 7/7

| Stages                | Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Technical considerations                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. Storage conditions | ◆Storage  1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.  Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH  The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery.  *The packaging material should be kept where no chlorine or sulfur exists in the air. | If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors |