Data sheet acquired from Harris Semiconductor SCHS245B

Features

- Buffered Inputs
- Typical Propagation Delay
- 4ns at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
- Exceeds 2kV ESD Protection per MIL-STD-883, Method 3015
- SCR-Latchup-Resistant CMOS Process and Circuit Design
- Speed of Bipolar FAST™/AS/S with Significantly Reduced Power Consumption
- Balanced Propagation Delays
- AC Types Feature 1.5V to 5.5V Operation and Balanced Noise Immunity at 30\% of the Supply
- $\pm 24 m A$ Output Drive Current
- Fanout to 15 FAST ${ }^{\text {TM }}$ ICs
- Drives 50Ω Transmission Lines

Description

The 'AC245 and 'ACT245 are octal-bus transceivers that utilize Advanced CMOS Logic technology. They are noninverting three-state bidirectional transceiver-buffers intended for two-way transmission from "A" bus to "B" bus or " B " bus to " A ". The logic level present on the direction input (DIR) determines the data direction. When the output enable input ($\overline{\mathrm{OE}}$) is HIGH, the outputs are in the high-impedance state.

Ordering Information

PART NUMBER	TEMP. RANGE ${ }^{\circ} \mathrm{C}$)	PACKAGE
CD54AC245F3A	-55 to 125	20 Ld CERDIP
CD74AC245E	-55 to 125	20 Ld PDIP
CD74AC245M	-55 to 125	20 Ld SOIC
CD74AC245SM	-55 to 125	20 Ld SSOP
CD54ACT245F3A	-55 to 125	20 Ld CERDIP
CD74ACT245E	-55 to 125	20 Ld PDIP
CD74ACT245M	-55 to 125	20 Ld SOIC
CD74ACT245SM	-55 to 125	20 Ld SSOP
NOTES:		

1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
2. Wafer and die for this part number is available which meets all electrical specifications. Please contact your local TI sales office or customer service for ordering information.

Pinout

DIR 1	20 VCC
A0 2	19 OE
A1 3	18 B0
A2 4	$17 \mathrm{B1}$
A3 5	16 B2
A4 6	15 B3
A5 7	14 B4
A6 8	$13 \mathrm{B5}$
A7 9	$12 \mathrm{B6}$
GND 10	11 B7

Functional Diagram

TRUTH TABLE

CONTROL INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B Data to A Bus
L	H	A Data to B Bus
H	X	Isolation

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Irrelevant
To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ resistors.

Absolute Maximum Ratings	
DC Supply Voltage, V_{CC}	-0.5V to 6V
DC Input Diode Current, I_{K}	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 50 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, Io	
DC $\mathrm{V}_{\text {CC }}$ or Ground Current, ICC or $\mathrm{I}_{\text {GND }}$ (Note 3)	$\pm 100 \mathrm{~mA}$
Operating Conditions	
	${ }^{-55}{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Supply Voltage Range, $\mathrm{V}_{\text {CC }}$ (Note 4)	
AC Types.	.1.5V to 5.5 V
ACT Types	.4.5V to 5.5V
DC Input or Output Voltage, $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \ldots \ldots \mathrm{VV}$ to V_{CC}	
AC Types, 1.5 V to 3 V	50ns (Max)
AC Types, 3.6 V to 5.5 V .	20ns (Max)
ACT Types, 4.5 V to 5.5 V .	10ns (Max)

Thermal Information

Thermal Resistance (Typical, Note 5) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
E Package . 69

M Package
58
SM Package
70
Maximum Junction Temperature (Plastic Package) 150 ${ }^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

Operating Conditions
Temperature Range, T_{A}. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

3. For up to 4 outputs per device, add $\pm 25 \mathrm{~mA}$ for each additional output.
4. Unless otherwise specified, all voltages are referenced to ground.
5. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & V_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	MAX	MIN	MAX	MIN	MAX	

AC TYPES

High Level Input Voltage	V_{IH}	-	-	1.5	1.2	-	1.2	-	1.2	-	V
				3	2.1	-	2.1	-	2.1	-	V
				5.5	3.85	-	3.85	-	3.85	-	V
Low Level Input Voltage	VIL	-	-	1.5	-	0.3	-	0.3	-	0.3	V
				3	-	0.9	-	0.9	-	0.9	V
				5.5	-	1.65	-	1.65	-	1.65	V
High Level Output Voltage	V_{OH}	V_{IH} or V_{IL}	-0.05	1.5	1.4	-	1.4	-	1.4	-	V
			-0.05	3	2.9	-	2.9	-	2.9	-	V
			-0.05	4.5	4.4	-	4.4	-	4.4	-	V
			-4	3	2.58	-	2.48	-	2.4	-	V
			-24	4.5	3.94	-	3.8	-	3.7	-	V
			-75 (Note 6, 7)	5.5	-	-	3.85	-	-	-	V
			-50 (Note 6, 7)	5.5	-	-	-	-	3.85	-	V

DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{0}(\mathrm{~mA})$		MIN	MAX	MIN	MAX	MIN	MAX	
Low Level Output Voltage	V_{OL}	V_{IH} or V_{IL}	0.05	1.5	-	0.1	-	0.1	-	0.1	V
			0.05	3	-	0.1	-	0.1	-	0.1	V
			0.05	4.5	-	0.1	-	0.1	-	0.1	V
			12	3	-	0.36	-	0.44	-	0.5	V
			24	4.5	-	0.36	-	0.44	-	0.5	V
			$\begin{gathered} 75 \\ (\text { Note 6, 7) } \end{gathered}$	5.5	-	-	-	1.65	-	-	V
			$\begin{gathered} 50 \\ \text { (Note 6, 7) } \end{gathered}$	5.5	-	-	-	-	-	1.65	V
Input Leakage Current	1	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	5.5	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Three-State Leakage Current	loz	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } G N D \end{aligned}$	-	5.5	-	± 0.5	-	± 5	-	± 10	$\mu \mathrm{A}$
Quiescent Supply Current MSI	${ }^{\text {c C }}$	$\mathrm{V}_{\mathrm{CC}} \text { or }$ GND	0	5.5	-	8	-	80	-	160	$\mu \mathrm{A}$

ACT TYPES

High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	2	-	2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage	V_{OH}	$\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	-0.05	4.5	4.4	-	4.4	-	4.4	-	V
			-24	4.5	3.94	-	3.8	-	3.7	-	V
			$\begin{gathered} -75 \\ (\text { Note } 6,7) \end{gathered}$	5.5	-	-	3.85	-	-	-	V
			(Note 6, 7)	5.5	-	-	-	-	3.85	-	V
Low Level Output Voltage	V_{OL}	$\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	0.05	4.5	-	0.1	-	0.1	-	0.1	V
			24	4.5	-	0.36	-	0.44	-	0.5	V
			$\begin{gathered} 75 \\ \text { (Note 6, 7) } \end{gathered}$	5.5	-	-	-	1.65	-	-	V
			50 (Note 6, 7)	5.5	-	-	-	-	-	1.65	V
Input Leakage Current	I	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	-	5.5	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Three-State or Leakage Current	l OZ	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ \text { or } \mathrm{GND} \end{gathered}$	-	5.5	-	± 0.5	-	± 5	-	± 10	$\mu \mathrm{A}$
Quiescent Supply Current MSI	$I_{\text {CC }}$	$V_{C C} \text { or }$ GND	0	5.5	-	8	-	80	-	160	$\mu \mathrm{A}$
Additional Supply Current per Input Pin TTL Inputs High 1 Unit Load	$\Delta^{\text {CC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \end{aligned}$	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	2.4	-	2.8	-	3	mA

NOTES:
6. Test one output at a time for a 1 -second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
7. Test verifies a minimum 50Ω transmission-line-drive capability at $85^{\circ} \mathrm{C}, 75 \Omega$ at $125^{\circ} \mathrm{C}$.

ACT Input Load Table

INPUT	UNIT LOAD
An, Bn	0.83
$\overline{\mathrm{OE}}$	0.64
DIR	0.25

NOTE: Unit load is $\Delta \mathrm{I}_{\mathrm{CC}}$ limit specified in DC Electrical Specifications Table, e.g., 2.4mA max at $25^{\circ} \mathrm{C}$.

Switching Specifications Input $t_{r}, t_{f}=3 n s, C_{L}=50 p F$ (Worst Case)

PARAMETER	SYMBOL	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$			${ }_{-55}{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
AC TYPES									
Propagation Delay, Data to Output	${ }_{\text {t }}$ PLH, $\mathrm{t}_{\text {PHL }}$	1.5	-	-	96	-	-	106	ns
		$\begin{gathered} 3.3 \\ \text { (Note 9) } \end{gathered}$	3.2	-	10.8	3	-	11.9	ns
		$\begin{gathered} 5 \\ (\text { Note 10) } \end{gathered}$	2.2	-	7.7	2.1	-	8.5	ns
Propagation Delay, Output Disable to Output	tPLZ, tPHZ	1.5	-	-	159	-	-	175	ns
		3.3	4.7	-	15.9	4.4	-	17.5	ns
		5	3.7	-	12.7	3.5	-	14	ns
Propagation Delay, Output Enable to Output	${ }_{\text {tPZL, }}$ tPZH	1.5	-	-	159	-	-	175	ns
		3.3	5.6	-	19	5.3	-	21	ns
		5	3.7	-	12.7	3.5	-	14	ns
Minimum (Valley) V_{OH} During Switching of Other Outputs (Output Under Test Not Switching)	VOHV See Figure 1	5	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	V
Maximum (Peak) V_{OL} During Switching of Other Outputs (Output Under Test Not Switching)	$V_{\text {OLP }}$ See Figure 1	5	-	$\begin{array}{r} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{array}$	-	-	$\begin{array}{r} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{array}$	-	V
Three-State Output Capacitance	Co_{0}	-	-	15	-	-	15	-	pF
Input Capacitance	C_{1}	-	-	-	10	-	-	10	pF
Power Dissipation Capacitance	$\begin{aligned} & \text { CPD }^{2} \\ & \text { (Note 11) } \end{aligned}$	-	-	57	-	-	57	-	pF
ACT TYPES									
Propagation Delay, Data to Output	${ }^{\text {tPLH }}$, tPHL	$\begin{gathered} 5 \\ (\text { Note 10) } \end{gathered}$	2.7	-	9.1	2.5	-	10	ns
Propagation Delay, Output Disable to Output	${ }_{\text {tPLZ }}$, tPHZ	5	3.7		12.7	3.5		14	ns
Propagation Delay, Output Enable to Output	${ }_{\text {tPZL, }}$ tPZH	5	3.8		13.1	3.6		14.4	ns
Minimum (Valley) V_{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V_{OHV} See Figure 1	5	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	V
Maximum (Peak) $V_{\text {OL }}$ During Switching of Other Outputs (Output Under Test Not Switching)	$V_{\text {OLP }}$ See Figure 1	5	-	$\begin{gathered} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{array}{r} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{array}$	-	V

Switching Specifications Input $t_{r}, t_{f}=3 n s, C_{L}=50 p F$ (Worst Case) (Continued)

PARAMETER	SYMBOL	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Three-State Output Capacitance	C_{O}	-	-	15	-	-	15	-	pF
Input Capacitance	CI	-	-	-	10	-	-	10	pF
Power Dissipation Capacitance	$\begin{gathered} \mathrm{C}_{\text {PD }} \\ \text { (Note 11) } \end{gathered}$	-	-	57	-	-	57	-	pF

NOTES:
8. Limits tested 100%
9. 3.3 V Min is at 3.6 V , Max is at 3 V .
10. 5 V Min is at 5.5 V , Max is at 4.5 V .
11. $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power consumption per channel.
$A C: P_{D}=V_{C C}{ }^{2} f_{i}\left(C_{P D}+C_{L}\right)$
$A C T: P_{D}=V_{C C}{ }^{2} f_{i}\left(C_{P D}+C_{L}\right)+V_{C C} \Delta I_{C C}$ where $f_{i}=$ input frequency, $C_{L}=$ output load capacitance, $V_{C C}=$ supply voltage.

NOTES:
12. Input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$, SKEW 1 ns .
13. R.F. fixture with 700 MHz design rules required. IC should be soldered into test board and bypassed with $0.1 \mu \mathrm{~F}$ capacitor. Scope and probes require 700 MHz bandwidth.

FIGURE 1. SIMULTANEOUS SWITCHING TRANSIENT WAVEFORMS

NOTE:
14. For $A C$ Series only: When $V_{C C}=1.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$.

FIGURE 2. THREE-STATE PROPAGATION DELAY TIMES AND TEST CIRCUIT

FIGURE 3. PROPAGATION DELAY TIMES

NOTE: For $A C$ Series Only: When $V_{C C}=1.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$.

	AC	ACT
Input Level	V_{CC}	3 V
Input Switching Voltage, V_{S}	$0.5 \mathrm{~V}_{\mathrm{CC}}$	1.5 V
Output Switching Voltage, V_{S}	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$

FIGURE 4. PROPAGATION DELAY TIMES

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
CD54AC245F3A	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
CD54ACT245F3A	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
CD74AC245E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74AC245EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74AC245M	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245M96	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245M96E4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245M96G4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245ME4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245MG4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245SM	OBSOLETE	SSOP	DB	20		$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245SM96	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245SM96E4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74AC245SM96G4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74ACT245EE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74ACT245M	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245M96	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245M96E4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245ME4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245MG4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245SM	OBSOLETE	SSOP	DB	20		$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245SM96	ACTIVE	SSOP	DB	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245SM96E4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT245SM96G4	ACTIVE	SSOP	DB	20	2000	Green (RoHS \&	CU NIPDAU	Level-1-260C-UNLIM

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ Lead/Ball Finish MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $n o \mathrm{Sb} / \mathrm{Br})$ | | |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	$\mathbf{A 0}(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
CD74AC245M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74AC245SM96	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
CD74ACT245M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT245SM96	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC245M96	SOIC	DW	20	2000	346.0	346.0	41.0
CD74AC245SM96	SSOP	DB	20	2000	346.0	346.0	33.0
CD74ACT245M96	SOIC	DW	20	2000	346.0	346.0	41.0
CD74ACT245SM96	SSOP	DB	20	2000	346.0	346.0	33.0

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DW (R-PDSO-G2O)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AC.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

