Features

■ Very high speed: 45 ns
■ Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V
■ Ultra low standby power
\square Typical standby current: $1 \mu \mathrm{~A}$
\square Maximum standby current: $7 \mu \mathrm{~A}$

- Ultra low active power
- Typical active current: 2 mA at $\mathrm{f}=1 \mathrm{MHz}$
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ features
- Automatic power down when deselected

■ Complementary metal oxide semiconductor (CMOS) for optimum speed and power

■ Available in Pb-free 44-pin thin small outline package (TSOP) II package

Functional Description

The CY62136ESL is a high performance CMOS static RAM organized as 128 K words by 16 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life ${ }^{\mathrm{TM}}\left(\mathrm{MoBL}^{\circledR}\right)$ in portable
applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected (CE HIGH). The input and output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$) are placed in a high impedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH) or during a write operation (CE LOW and WE LOW).
To write to the device, take Chip Enable $(\overline{\mathrm{CE}})$ and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. If Byte Low Enable ($\overline{\mathrm{BLE}}$) is LOW, then data from I/O pins ($1 / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the location specified on the address pins (A_{0} through A_{16}). If Byte High Enable ($\overline{\mathrm{BHE})}$ is LOW, then data from I/O pins ($\mathrm{I} / \mathrm{O}_{8}$ through $\left.\mathrm{I} / \mathrm{O}_{15}\right)$ is written into the location specified on the address pins (A_{0} through A_{16}).
To read from the device, take Chip Enable ($\overline{\mathrm{CE}})$ and Output Enable ($\overline{\mathrm{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on $\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$. If Byte High Enable (BHE) is LOW, then data from memory appears on $\mathrm{I} / \mathrm{O}_{8}$ to $\mathrm{I} / \mathrm{O}_{15}$. See the "Truth Table" on page 11 for a complete description of read and write modes.
For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

Logic Block Diagram

CY62136ESL MoBL ${ }^{\circledR}$

Contents

Pin Configuration3Product PortfolioMaximum Ratings4
Operating Range4
Electrical Characteristics. 4
Capacitance 5
Thermal Resistance 5
Data Retention Characteristics 6
Switching Characteristics 7
Switching Waveforms 8
Truth Table 11
Ordering Information 12
Package Diagram 12
Acronyms. 12
Document History Page 13
Sales, Solutions, and Legal Information 13
Worldwide Sales and Design Support 13
Products 13
PSoC Solutions 13

Pin Configuration

Figure 1. 44-Pin TSOP II (Top View) ${ }^{[1]}$

$\mathrm{A}_{4} \square \mathrm{O}_{1}$	44	A_{5}
$\mathrm{A}_{3} \square 2$	43	A_{6}
$A_{2} \square 3$	42	A_{7}
$\mathrm{A}_{1} \square 4$	41	OE
$\mathrm{A}_{0} \square 5$	40	$\overline{\mathrm{BHE}}$
$\overline{\text { CE }} \square 6$	39	BLE
$\mathrm{l} / \mathrm{O}_{0} \square 7$	38	$\mathrm{I} / \mathrm{O}_{15}$
$\mathrm{I} / \mathrm{O}_{1} \square 8$	37	$\square \mathrm{I} / \mathrm{O}_{14}$
$1 / \mathrm{O}_{2} \square 9$	36	$\square \mathrm{I} / \mathrm{O}_{13}$
$1 / \mathrm{O}_{3} \square 10$	35	$\square \mathrm{I} / \mathrm{O}_{12}$
$V_{C C} \square 11$	34	$\square \mathrm{V}_{\mathrm{SS}}$
$V_{\text {SS }} \square 12$	33	$\square \mathrm{V}_{\mathrm{CC}}$
$1 / \mathrm{O}_{4} \square 13$	32	$\square \mathrm{I} / \mathrm{O}_{11}$
$1 / \mathrm{O}_{5} \square 14$	31	$\square \mathrm{I} / \mathrm{O}_{10}$
$1 / \mathrm{O}_{6}-15$	30	$\square \mathrm{I} / \mathrm{O}_{9}$
$\mathrm{I}^{\prime} \mathrm{O}_{7} \square 16$	29	$\square \mathrm{I} / \mathrm{O}_{8}$
WE $\square 17$	28	$\square \mathrm{NC}$
$\mathrm{A}_{16} \square 18$	27	A_{8}
$\mathrm{A}_{15} \square 19$	26	$\square A_{9}$
$\mathrm{A}_{14} \square 20$	25	$\square A_{10}$
$\mathrm{A}_{13} \square 21$	24	$\square A_{11}$
$\mathrm{A}_{12} \square 22$	23	$\square \mathrm{NC}$

Product Portfolio

Product	Range	V_{Cc} Range (V) ${ }^{\text {[1] }}$	Speed (ns)	Power Dissipation					
				Operating I_{Cc}, (mA)				Standby, $\mathrm{I}_{\text {SB2 }}$ ($\mu \mathrm{A}$)	
				$\mathrm{f}=1 \mathrm{MHz}$		$\mathrm{f}=\mathrm{f}_{\text {max }}$			
				Typ ${ }^{[2]}$	Max	Typ ${ }^{[2]}$	Max	Typ ${ }^{[2]}$	Max
CY62136ESL	Industrial	2.2 V to 3.6 V and 4.5 V to 5.5 V	45	2	2.5	15	20	1	7

1. Datasheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V .
2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, and $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
[^0]
Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential. \qquad -0.5 V to 6.0 V

DC Voltage Applied to Outputs
in High-Z State ${ }^{[8,9]}$ \qquad -0.5 V to 6.0 V
DC Input Voltage ${ }^{[8, ~ 9]}$ \qquad -0.5 V to 6.0 V
Output Current into Outputs (LOW). \qquad 20 mA

Static Discharge Voltage.. >2001V
(MIL-STD-883, Method 3015)
Latch up Current.
$>200 \mathrm{~mA}$
Operating Range

Device	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}{ }^{[1]}$
CY62136ESL	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$2.2 \mathrm{~V}-3.6 \mathrm{~V}$, and $4.5 \mathrm{~V}-5.5 \mathrm{~V}$

1. Full Device AC operation assumes a $100 \mu \mathrm{~s}$ ramp time from 0 to V_{CC} (min) and $200 \mu \mathrm{~s}$ wait time after V_{CC} stabilization.

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		45 ns			Unit
				Min	Typ ${ }^{[1]}$	Max	
V_{OH}	Output HIGH Voltage	$2.2 \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7$	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$	2.0			V
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6$	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			
		$4.5 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5$	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			
V_{OL}	Output LOW Voltage	$2.2 \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7$	$\mathrm{l}_{\mathrm{OL}}=0.1 \mathrm{~mA}$			0.4	V
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6$	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.4	
		$4.5 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5$	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.4	
V_{IH}	Input HIGH Voltage	$2.2 \leq \mathrm{V}_{\text {CC }} \leq 2.7$		1.8		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6$		2.2		$\mathrm{V}_{\mathrm{CC}}+0.3$	
		$4.5 \leq \mathrm{V}_{\text {CC }} \leq 5.5$		2.2		$\mathrm{V}_{\mathrm{CC}}+0.5$	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$2.2 \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7$		-0.3		0.6	V
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6$		-0.3		0.8	
		$4.5 \leq \mathrm{V}_{\text {CC }} \leq 5.5$		-0.5		0.8	
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1		+1	$\mu \mathrm{A}$
I_{Oz}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-1		+1	$\mu \mathrm{A}$
${ }^{\text {cc }}$	V_{CC} Operating Supply Current	$f=f_{\text {max }}=1 / \mathrm{t}_{\text {RC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} \text { max }} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \mathrm{CMOS} \text { levels } \end{aligned}$		15	20	
		$\mathrm{f}=1 \mathrm{MHz}$			2	2.5	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power Down Current - CMOS Inputs	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{f}=\mathrm{f}_{\text {max }}(\text { Address } \text { and } \text { Data Only }), \\ & \mathrm{f}=0(\overline{\mathrm{OE}}, \overline{\mathrm{BHE}}, \overline{\mathrm{BLE}} \text { and } \overline{\mathrm{WE}}), \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\max)} \end{aligned}$			1	7	$\mu \mathrm{A}$
$\mathrm{ISB2}^{2}$	Automatic CE Power Down Current - CMOS Inputs	$\begin{aligned} & \overline{C E} \geq V_{C C}-0.2 V, V_{I N} \geq V_{C C}-0.2 V \text { or } V_{I N} \leq 0.2 V, \\ & f=0, V_{C C}=V_{C C(\max)} \end{aligned}$			1	7	$\mu \mathrm{A}$

1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, and $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Only chip enable ($\overline{\mathrm{CE}}$) and byte enables ($\overline{\mathrm{BHE}}$ and $\overline{\mathrm{BLE}}$) need to be tied to CMOS levels to meet the $\mathrm{I}_{\mathrm{SB} 2} / \mathrm{I}_{\mathrm{CCDR}}$ spec. Other inputs can be left floating.

Notes

8. $\mathrm{V}_{\mathrm{IL}}(\min)=-2.0 \mathrm{~V}$ for pulse durations less than 20 ns .
9. $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$ for pulse durations less than 20 ns .

Capacitance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	Max	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}$	10	pF

Thermal Resistance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	TSOP II	Unit
$\Theta_{\text {JA }}$	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 $\times 4.5$ inch, two-layer printed circuit board	77	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}	Thermal Resistance (Junction to Case)		13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 2. AC Test Loads and Waveforms

Parameters	$\mathbf{2 . 5 V}$	3.0V	5.0V	Unit
R 1	16667	1103	1800	Ω
R 2	15385	1554	990	Ω
R_{TH}	8000	645	639	Ω
$\mathrm{~V}_{\mathrm{TH}}$	1.20	1.75	1.77	V

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ	Max	Unit
$V_{\text {DR }}$	V_{CC} for data retention			1.0			V
${ }^{\text {ICCDR }}$	Data retention current	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$		0.8	3	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[1]}$	Chip deselect to data Retention Time			0			ns
$\mathrm{t}_{\mathrm{R}}{ }^{[2]}$	Operation recovery time			$t_{R C}$			ns

1. Tested initially and after any design or process changes that may affect these parameters.
2. Full device operation requires linear $V_{C C}$ ramp from $V_{D R}$ to $V_{C C(\text { min })} \geq 100 \mu \mathrm{~s}$ or stable at $V_{C C(m i n)} \geq 100 \mu \mathrm{~s}$.

Figure 3. Data Retention Waveform

Switching Characteristics

Over the Operating Range ${ }^{[1,2]}$

Parameter	Description	45 ns		Unit
		Min	Max	
Read Cycle				
t_{RC}	Read cycle time	45		ns
t_{AA}	Address to data valid		45	ns
$\mathrm{t}_{\text {OHA }}$	Data hold from address change	10		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to data valid		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to data valid		22	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to LOW-Z ${ }^{[3]}$	5		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High-Z ${ }^{[3,4]}$		18	ns
tIzCE	$\overline{\mathrm{CE}}$ LOW to Low-Z ${ }^{[3]}$	10		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High-Z ${ }^{[3,4]}$		18	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up	0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down		45	ns
$\mathrm{t}_{\text {DBE }}$	$\overline{\mathrm{BLE}} / \overline{\mathrm{BHE}}$ LOW to Data Valid		22	ns
t LZBE	$\overline{\mathrm{BLE}} / \overline{\mathrm{BHE}} \mathrm{LOW}$ to Low-${ }^{[3]}$	5		ns
$\mathrm{t}_{\text {HZBE }}$	$\overline{\mathrm{BLE}} / \overline{\mathrm{BHE}} \mathrm{HIGH}$ to HIGH-Z ${ }^{[3,4]}$		18	ns
Write Cycle ${ }^{[5]}$				
t_{wc}	Write cycle time	45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to write end	35		ns
$\mathrm{t}_{\text {AW }}$	Address setup to write end	35		ns
t_{HA}	Address hold from write end	0		ns
$\mathrm{t}_{\text {SA }}$	Address setup to write start	0		ns
$t_{\text {PWE }}$	$\overline{\text { WE }}$ pulse width	35		ns
$\mathrm{t}_{\text {BW }}$	$\overline{\mathrm{BLE}} / \overline{\mathrm{BHE}}$ LOW to write end	35		ns
$\mathrm{t}_{\text {SD }}$	Data setup to write end	25		ns
t_{HD}	Data hold from write end	0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High-Z ${ }^{[3,4]}$		18	ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low- ${ }^{[3]}$	10		ns

1. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ as shown in the AC Test Loads and Waveforms on page 5.
2. AC timing parameters are subject to byte enable signals ($\overline{\mathrm{BHE}}$ or $\overline{\mathrm{BLE}}$) not switching when chip is disabled. See application note AN13842 for further clarification. 3. At any temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZBE }}$ is less than $t_{\text {LZBE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any device.
3. $t_{\text {HZOE }}, t_{\text {HZCE }}, t_{\text {HZBE }}$, and $t_{\text {HZWE }}$ transitions are measured when the outputs enter a high-impedance state.
4. The internal write time of the memory is defined by the overlap of $\overline{W E}, \overline{C E}=V_{I L}, \overline{B H E}, \overline{B L E}$ or both $=V_{I L}$. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

CY62136ESL MoBL ${ }^{\circledR}$

Switching Waveforms

Figure 4. Read Cycle No.1: Address Transition Controlled. ${ }^{[2,3]}$

Figure 5. Read Cycle No. 2: $\overline{\mathrm{OE}}$ Controlled ${ }^{[3,4]}$

[^1]CY62136ESL MoBL ${ }^{\circledR}$

Switching Waveforms (continued)
Figure 6. Write Cycle No 1: $\overline{\text { WE Controlled }}{ }^{[5,5,6]}$

Figure 7. Write Cycle 2: $\overline{\operatorname{CE}}$ Controlled ${ }^{[5,5,6]}$

[^2]Switching Waveforms (continued)
Figure 8. Write Cycle 3: $\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW ${ }^{[6]}$

Figure 9. Write Cycle 4: $\overline{\mathrm{BHE}} / \overline{\mathrm{BLE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW ${ }^{[6]}$

CY62136ESL MoBL ${ }^{\circledR}$

Truth Table

$\overline{C E}{ }^{[1]}$	WE	OE	$\overline{\mathrm{BHE}}{ }^{[1]}$	$\overline{\mathrm{BLE}}{ }^{[1]}$	Inputs/Outputs	Mode	Power
H	X	X	X	X	High-Z	Deselect/Power Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	X	X	H	H	High-Z	Output Disabled	Active (I_{CC})
L	H	L	L	L	Data Out ($1 / \mathrm{O}_{0}-1 / \mathrm{O}_{15}$)	Read	Active (I_{CC})
L	H	L	H	L	Data Out $\left(1 / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}\right)$; $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$ in High-Z	Read	Active (I_{Cc})
L	H	L	L	H	Data Out ($\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$); $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ in $\mathrm{High}-\mathrm{Z}$	Read	Active ($\mathrm{I}_{\text {cc }}$)
L	H	H	L	L	High-Z	Output Disabled	Active (I_{CC})
L	H	H	H	L	High-Z	Output Disabled	Active (I_{CC})
L	H	H	L	H	High-Z	Output Disabled	Active (I_{CC})
L	L	X	L	L	Data $\ln \left(1 / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{15}\right)$	Write	Active (I_{CC})
L	L	X	H	L	Data $\ln \left(1 / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}\right)$; $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$ in High-Z	Write	Active ($\mathrm{ICC}^{\text {) }}$
L	L	X	L	H	Data $\ln \left(\mathrm{I} / \mathrm{O}_{8}-\mathrm{l} / \mathrm{O}_{15}\right)$; $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ in High-Z	Write	Active ($\mathrm{ICC}^{\text {) }}$

1. Chip enable ($\overline{\mathrm{CE}})$ and Byte enables $(\overline{\mathrm{BHE}} / \overline{\mathrm{BLE}})$ must be at CMOS levels (not floating). Intermediate voltage levels on these pins is not permitted.

CY62136ESL MoBL ${ }^{\circledR}$

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62136ESL-45ZSXI	$51-85087$	$44-P i n$ TSOP Type II (Pb-Free)	Industrial

Package Diagram

Figure 10. 44-Pin TSOP II, 51-85087

Acronyms

Acronym	Description
$\overline{\mathrm{BHE}}$	byte high enable
$\overline{\mathrm{BLE}}$	byte low enable
CMOS	complementary metal oxide semiconductor
$\overline{\mathrm{CE}}$	chip enable
I / O	input/output
$\overline{\mathrm{OE}}$	output enable
SRAM	static random access memory
TSOP	thin small outline package
VFBGA	very fine ball gird array
$\overline{\mathrm{WE}}$	write enable

Document History Page

Document Title: CY62136ESL MoBL Document Number: 001-48147				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
${ }^{* *}$	2615537	VKN/PYRS	$12 / 03 / 08$	New Data Sheet
${ }^{*}$ A	2718906	VKN	$06 / 15 / 2009$	Post to external web
${ }^{*} B$	2944332	VKN	$06 / 04 / 2010$	Added Contents Added footnote for ISB2 parameter in Electrical Characteristics
Added Footnote 2 in Switching Characteristics				
Added footnote related to Chip enable and Byte enables in Truth Table				
Updated Package Diagram				
Updated links in Sales, Solutions, and Legal Information				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks \& Buffers
Interface
Lighting \& Power Control

Memory
Optical \& Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
cypress.com/go/memory
cypress.com/go/image
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless

[^3]
[^0]: Note

 1. NC pins are not connected on the die.
[^1]: Notes
 2. The device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{BHE}}, \overline{\mathrm{BLE}}$, or both $=\mathrm{V}_{\mathrm{IL}}$.
 3. WE is HIGH for read cycle.
 4. Address valid before or similar to $\overline{\mathrm{CE}}, \overline{\mathrm{BHE}}, \overline{\mathrm{BLE}}$ transition LOW.

[^2]: Notes
 5. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
 6. If CE goes HIGH simultaneously with $\mathrm{WE}=\mathrm{V}_{\mathrm{IH}}$, the output remains in a high impedance state
 7. During this period, the I/Os are in output state. Do not apply input signals.

[^3]: © Cypress Semiconductor Corporation, 2008-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

 Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 Use may be limited by and subject to the applicable Cypress software license agreement

