

1-Mbit (64K x 16) Static RAM

Features

• Temperature Range

- Automotive: -40°C to 125°C

High speed

— t_{AA} = 15 ns

• Optimized voltage range: 2.5V - 2.7V

• Low active power: 220 mW (Max.)

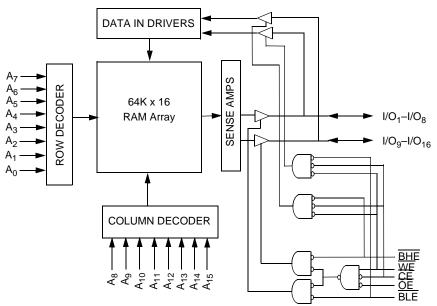
· Automatic power-down when deselected

Independent control of upper and lower bits

• CMOS for optimum speed/power

 Available in Pb-free and non Pb-free 44-pin TSOP II, 44-pin (400-Mil) Molded SOJ and Pb-free 48-ball FPBGA packages

Functional Description


The CY7C1021CV26 is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A₀ through A₁₅).

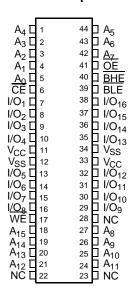
Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O₁ to I/O₈. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the end of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_1$ through I/O $_1$ 6) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a Write operation (CE LOW, and WE LOW).

Logic Block Diagram

Selection Guide^[1]

	-15	Unit
Maximum Access Time	15	ns
Maximum Operating Current	80	mA
Maximum CMOS Standby Current	10	mA


Note:

^{1.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Pin Configuration^[2]

TSOP II -Top View

Pin Definitions

Pin Name	Pin Number	I/O Type	Description		
A ₀ -A ₁₅	1–5, 18–21, 24–27, 42–44	Input	Address Inputs used to select one of the address locations.		
I/O ₁ –I/O ₁₆	7–10, 13–16, 29–32, 35–38	Input/Output	Bidirectional Data I/O lines. Used as input or output lines depending on operation.		
NC	22, 23, 28	No Connect	No Connects. This pin is not connected to the die.		
WE	17	Input/Control	Write Enable Input, active LOW. When selected LOW, a Write is conducted. When selected HIGH, a Read is conducted.		
CE	6	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.		
BHE, BLE	40, 39	Input/Control	Byte Write Select Inputs, active LOW. \overline{BHE} controls I/O ₁₆ –I/O ₉ , \overline{BLE} controls I/O ₈ –I/O ₁ .		
ŌĒ	41	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.		
V _{SS}	12, 34	Ground	Ground for the device. Should be connected to ground of the system.		
V _{CC}	11, 33	Power Supply	Power Supply inputs to the device.		

Note:
2. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.......55°C to +125°C Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[3]}\,....\,\mbox{--}0.5\mbox{V}$ to +4.6V

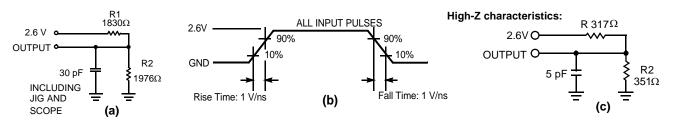
DC Input Voltage ^[3]	. -0.5 V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Automotive	-40°C to +125°C	2.5V-2.7V

Electrical Characteristics Over the Operating Range

			-15		
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ mA}$	2.3		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 1.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.0	$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage ^[3]		-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-3	+3	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled	-3	+3	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$, $I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$		80	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$		15	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{\text{CE}} \geq \text{V}_{CC} - 0.3\text{V}, \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V}, \\ &\text{or V}_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{aligned}$		10	mA


Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 2.6V$	8	pF

Thermal Resistance^[4]

Ī	Parameter	Description	Test Conditions	TSOP-II	Unit
Ī	Θ_{JA}	Thermal Resistance (Junction to Ambient)		76.92	°C/W
Į	$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)	four-layer printed circuit board	15.86	°C/W

AC Test Loads and Waveforms^[5]

Notes:

- 3. V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} + 0.5V for pulse durations of less than 20 ns.
 4. Tested initially and after any design or process changes that may affect these parameters
 5. AC characteristics (except High-Z) are tested using the Thevenin load shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c)

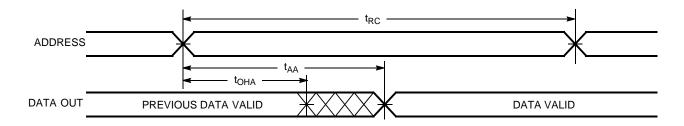
Switching Characteristics Over the Operating Range^[6]

Parameter	Description	Min.	Max.	Unit
Read Cycle	•			
t _{RC}	Read Cycle Time	15		ns
t _{AA}	Address to Data Valid		15	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		15	ns
t _{DOE}	OE LOW to Data Valid		7	ns
t _{LZOE}	OE LOW to Low-Z ^[7]	0		ns
t _{HZOE}	OE HIGH to High-Z ^[7, 8]		7	ns
t _{LZCE}	CE LOW to Low-Z ^[7]	3		ns
t _{HZCE}	CE HIGH to High-Z ^[7, 8]		7	ns
t _{PU} ^[9]	CE LOW to Power-Up	0		ns
t _{PD} ^[9]	CE HIGH to Power-Down		15	ns
t _{DBE}	Byte Enable to Data Valid		7	ns
t _{LZBE}	Byte Enable to Low-Z	0		ns
t _{HZBE}	Byte Disable to High-Z		7	ns
Write Cycle ^[10]		<u>'</u>	•	
t _{WC}	Write Cycle Time	15		ns
t _{SCE}	CE LOW to Write End	10		ns
t _{AW}	Address Set-Up to Write End	10		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	10		ns
t _{SD}	Data Set-Up to Write End	8		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low-Z ^[7]	3		ns
t _{HZWE}	WE LOW to High-Z ^[7, 8]		7	ns
t _{BW}	Byte Enable to End of Write	9		ns

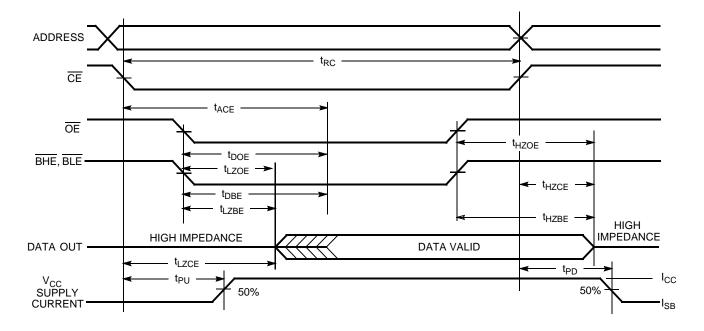
^{6.} Test conditions assume signal transition time of 2.6 ns or less, timing reference levels of 1.3V, input pulse levels of 0 to 2.6V.

7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

8. t_{HZOE}, t_{HZDE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.


9. This parameter is guaranteed by design and is not tested.

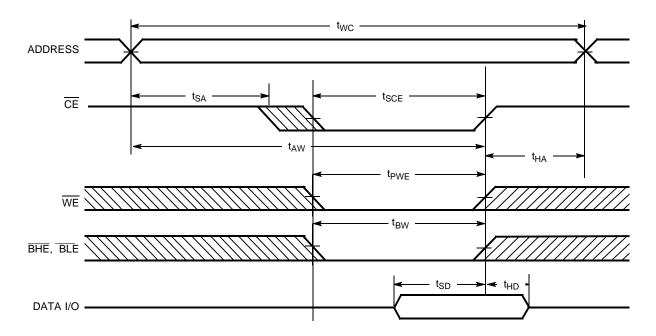
10. The internal Write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE/BLE LOW. CE, WE and BHE/BLE must be LOW to initiate a Write, and the transition of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.



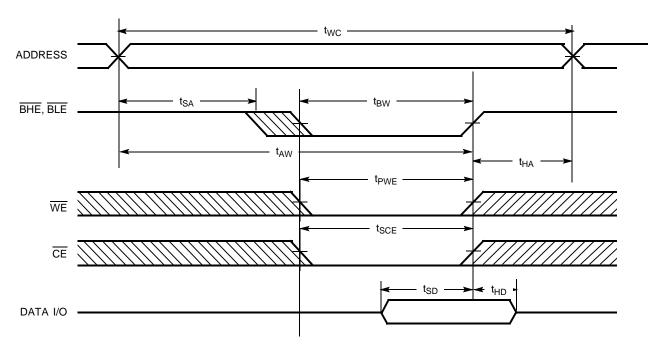
Switching Waveforms

Read Cycle No. 1^[11, 12]

Read Cycle No. 2 (OE Controlled)[12, 13]


- 11. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or $\overline{BLE} = V_{\parallel L}$.

 12. WE is HIGH for Read cycle.
- 13. Address valid prior to or coincident with CE transition LOW.

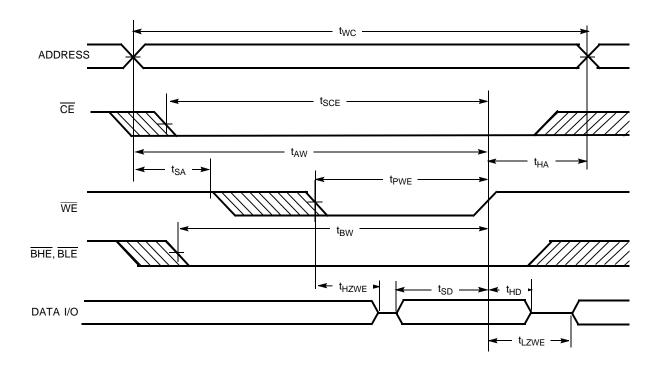


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[14, 15]

Write Cycle No. 2 (BLE or BHE Controlled)

Notes:


14. Data I/O is high-impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{|H}$.

15. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

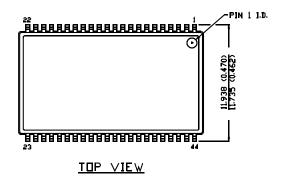
Switching Waveforms (continued)

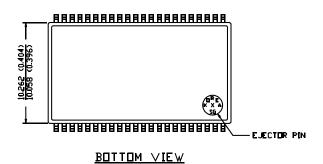
Write Cycle No. 3 (WE Controlled, LOW)

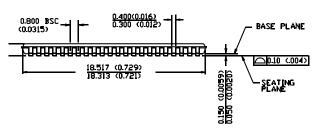
Truth Table

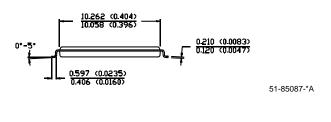
CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ -I/O ₁₆	Mode	Power
Н	Х	Х	X	Χ	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High-Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High-Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High-Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High-Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

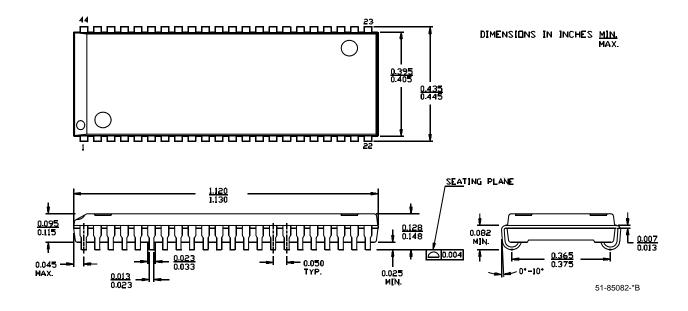

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1021CV26-15ZE	51-85087	44-pin TSOP Type II	Automotive
	CY7C1021CV26-15ZSXE		44-pin TSOP Type II (Pb-Free)	
	CY7C1021CV26-15VE 51-85082		44-pin (400-Mil) Molded SOJ	
	CY7C1021CV26-15VXE		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021CV26-15BAE	51-85150	48-ball FPBGA (6 x 8 x 1 mm) (Pb-Free)	

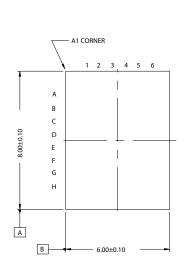


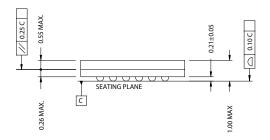

Package Diagrams

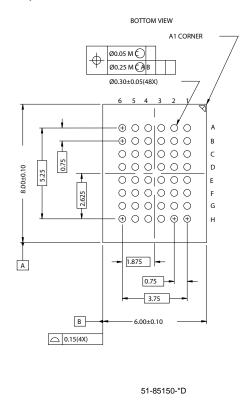

44-pin TSOP II (51-85087)

DIMENSION IN MM (INCH)
MAX
MIN.




44-pin (400-Mil) Molded SOJ (51-85082)




Package Diagrams (continued)

48-ball FBGA (6 x 8 x 1 mm) (51-85150)

TOP VIEW

All products and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY7C1021CV26 1-Mbit (64K x 16) Static RAM Document Number: 38-05589 Orig. of REV. ECN NO. **Issue Date** Change **Description of Change** 238454 See ECN RKF New data sheet for Automotive *A See ECN SYT Added Lead-Free Product Information 335861 Included the 44-Lead (400-Mil) Molded SOJ V34 Package Changed the description of I_{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I_{OS} parameter from DC Electrical Characteristics table Updated Ordering Information Table *В **NXR** 493543 See ECN