November 2008

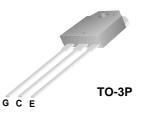
FAIRCHILD

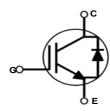
SEMICONDUCTOR®

FGA70N33BTD **330V, 70A PDP IGBT**

Features

- High current capability
- ٠ Low saturation voltage: V_{CE(sat)} =1.7V @ I_C = 70A
- High input impedance
- Fast switching •
- RoHS Compliant •


Applications


PDP System

General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		330	V
V _{GES}	Gate to Emitter Voltage		± 30	V
I _{Cpulse(1)} *	Pulsed Collector Current @	T _C = 25°C	160	А
I _{C pulse(2)} *	Pulsed Collector Current @	T _C = 25°C	220	А
P _D	Maximum Power Dissipation @	T _C = 25 ^o C	149	W
• D	Maximum Power Dissipation @	$T_{\rm C} = 100^{\rm o}{\rm C}$	60	W
V _{RRM}	Peak Repetitive Reverse Voltage of Diode		330	V
I _{F(AV)}	Average Rectified Forward Current of diode @ $T_C = 100^{\circ}C$		10	А
I _{FSM}	Non-repetitive Peak Surge Current of diode 60Hz Single Half-Sine wave		100	A
T _J , T _{stg}	Operating Junction Temperature and Storage Temperrature		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case		0.84	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case		1.57	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient		40	°C/W	

Notes:

1: Repetitive test , Pulse width=100usec , Duty=0.1 2: Half Sine Wave, D< 0.01, pluse width < 5usec

*I_C_pulse limited by max Tj

>	(Qty	
•	Box	
	Units	
	V	
	V/ºC	
	μA	
	nA	
	V	
	V	

Device N	larking	Device	Pa	Packaging ackage Type		Qty pe	er Tube		c Qty Box
		TO-3P Tube		30ea					
=lectric Symbol	al Char	Parameter		-	5°C unless otherwise noted	Min.	Тур.	Max.	Units
.,							71	-	
Off Charac	teristics								
BV _{CES}	Collector	to Emitter Breakdown Vo	ltage	$V_{GE} = 0V, I_C$	= 250μA	330			V
ΔB _{VCES} / ΔT _J	Temperate Voltage	ure Coefficient of Breakd	lown	$V_{GE} = 0V, I_C$	= 250uA		0.3		V/ºC
I _{CES}	Collector	Cut-Off Current		$V_{CE} = V_{CES}$	$V_{GE} = 0V$			250	μA
I _{GES}	G-E Leak	age Current		$V_{GE} = V_{GES}, V_{CE} = 0V$				±400	nA
On Charac	aristics								
V _{GE(th)}		shold Voltage		$I_C = 250 \mu A, V_{CE} = V_{GE}$		2.3	3.3	4.3	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage		I _C = 20A, V _{GE} = 15V			1.1		V	
			I _C = 40A, V _G			1.4		V	
			I _C = 70A, V _G	_E = 15V, T _C = 25 ^o C		1.7		V	
			I _C = 70A, V _{GE} = 15V, T _C = 125°C			1.8		V	
				C					
Dynamic C				[1000		-
C _{ies}	Input Cap			V _{CE} = 30V, V _{GE} = 0V,			1380		pF
C _{oes}	Output Capacitance			f = 1MHz			140		pF
C _{res}		Fransfer Capacitance					60		pF
Switching (12		
t _{d(on)} t	Rise Time	Delay Time		V _{CC} = 200V,	I _C = 20A,		13 26		ns ns
t _r		, Delay Time		$R_G = 5\Omega, V_G$	_{GE} = 15V,		46		ns
u _{d(off)} t _f	Fall Time			Resistive Load, $T_C = 25^{\circ}C$			198		ns
t _{d(on)}		Delay Time					130		ns
	Rise Time	•		$V_{CC} = 200V,$			28		ns
t _{d(off)}		Delay Time		$R_G = 5\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 125^{\circ}C$			48		ns
t _f	Fall Time				aa, 16 - 120 0		268		ns
Q _g	Total Gate	e Charge					49		nC
Q _{ge}		mitter Charge		$V_{CE} = 200V,$	I _C = 20A,		6.8		nC
Q _{gc}	Coto to C	ollector Charge		V _{GE} = 15V			17.5		nC

Symbol	Parameter	Test Conditio	Min.	Тур.	Max	Units	
V _{FM}	Diode Forward Voltage	I _F = 10A	$T_C = 25^{\circ}C$		1.1	1.5	V
FM Diodo Formard Voltago	.F .07.	T _C = 125°C		0.95] `	
t _{rr} Diode Reverse Recovery Time		$T_{\rm C} = 25^{\rm o}{\rm C}$		23		ns	
		I _F =10A, dI/dt = 200A/μs	T _C = 125 ^o C		36		
	Diode Peak Reverse Recovery		$T_{C} = 25^{\circ}C$		2.8		А
'rr	Current		$T_{C} = 125^{\circ}C$		5.1] ``
Q _{rr}	Diode Reverse Recovery Charge		$T_{\rm C} = 25^{\rm o}{\rm C}$		32		nC
∽II.			$T_{\rm C} = 125^{\rm o}{\rm C}$		91		

Typical Performance Characteristics

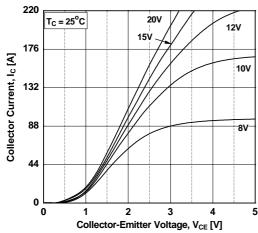


Figure 3. Typical Saturation Voltage Characteristics

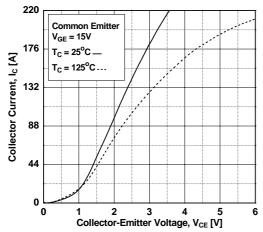
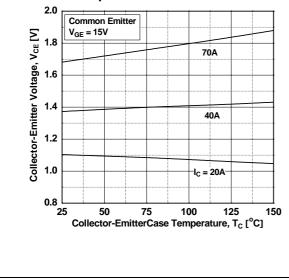
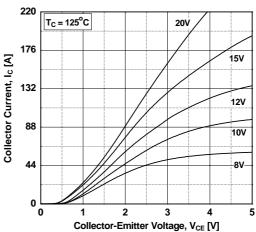




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

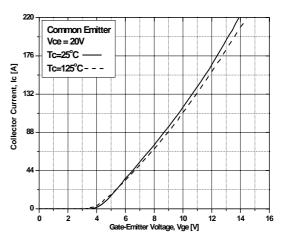
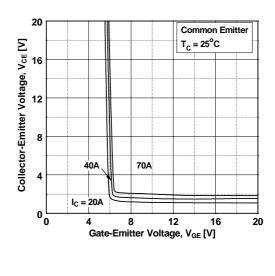
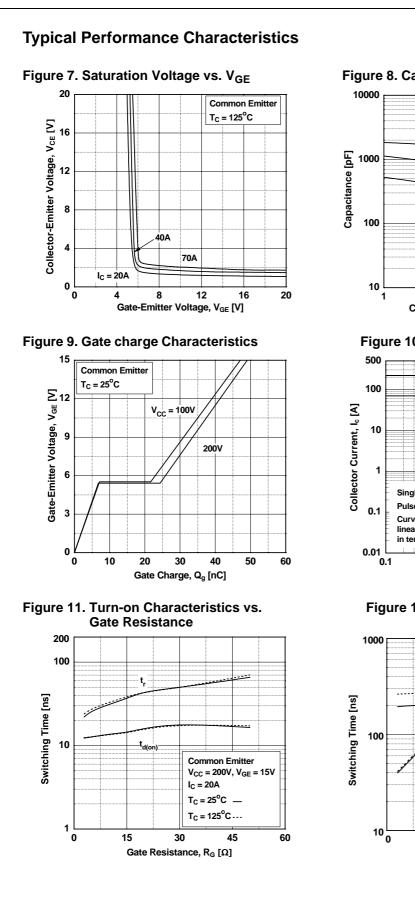
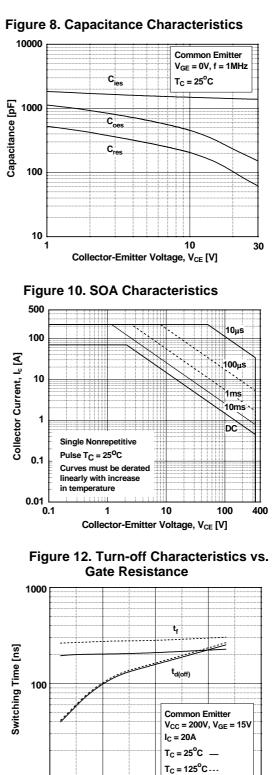
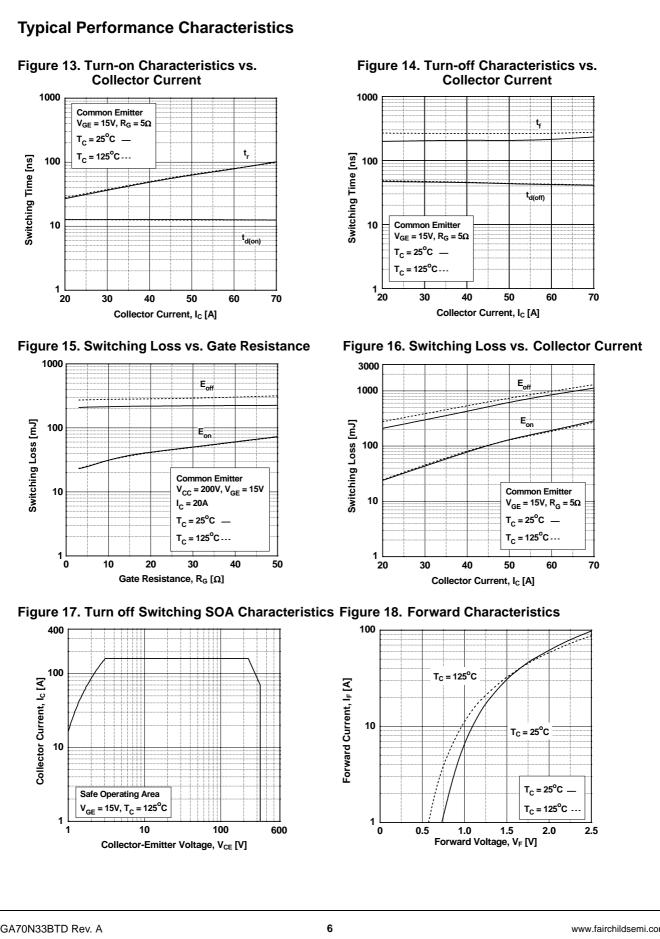
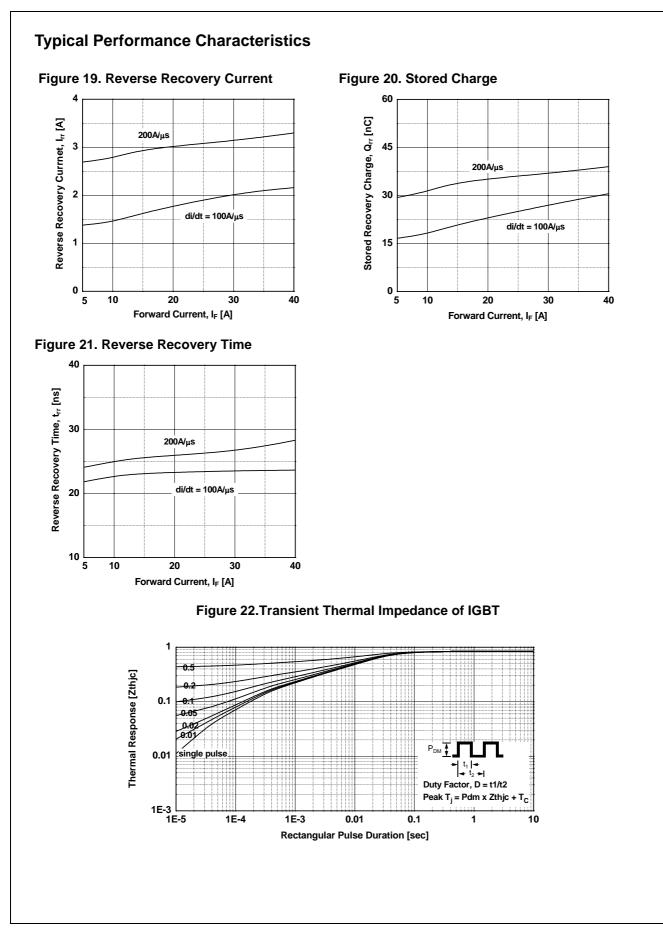
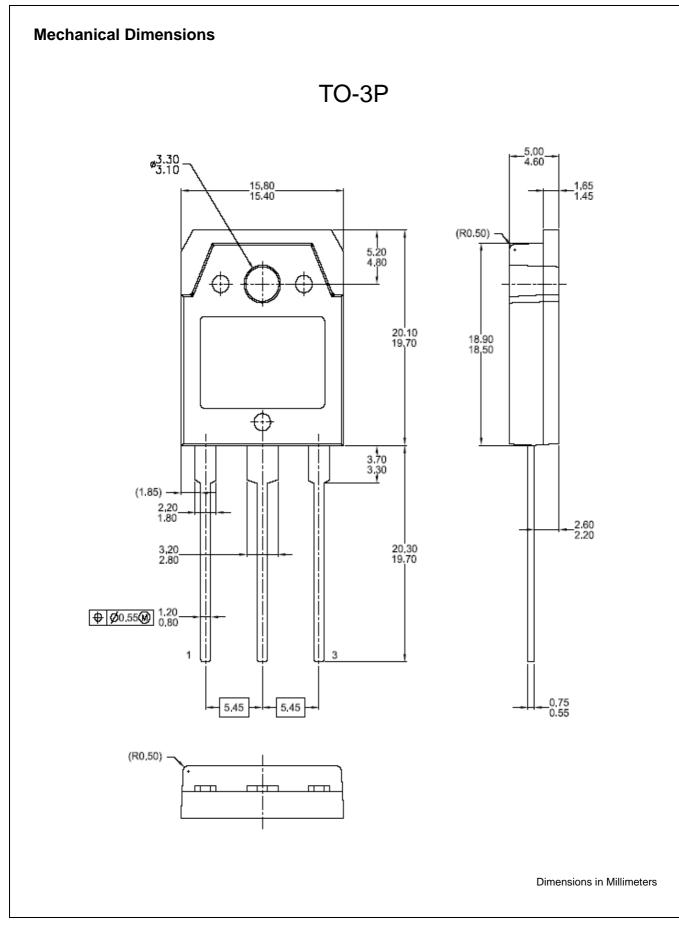





Figure 6. Saturation Voltage vs. V_{GE}


15


30


Gate Resistance, $R_G [\Omega]$

45

60

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

PRODUCT STATUS DEFINITIONS

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.