

TRENCHSTOP[™] RC-Series for hard switching applications

IGBT with integrated diode in packages offering space saving advantage

Features:

TRENCHSTOPTM Reverse Conducting (RC) technology for 600V applications offering

- Optimised V_{CEsat} and V_{F} for low conduction losses
- · Smooth switching performance leading to low EMI levels
- Very tight parameter distribution
- Operating range of 1 to 20kHz
- Maximum junction temperature 175°C
- Short circuit capability of 5µs
- Best in class current versus package size performance
- · Qualified according to JEDEC for target applications
- Pb-free lead plating; RoHS compliant (for PG-TO252: solder

temperature 260°C, MSL1)

• Complete product spectrum and PSpice Models:

http://www.infineon.com/igbt/

Applications:

Consumer motor drives

Туре	VCE	<i>l</i> c	V _{CEsat} , T _{vj} =25°C	\mathcal{T}_{vjmax}	Marking	Package
IKD04N60R	600V	4A	1.65V	175°C	K04R60	PG-TO252-3
IKU04N60R	600V	4A	1.65V	175°C	K04R60	PG-TO251-3

Maximum ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current, limited by T_{vjmax} $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$	<i>I</i> c	8.0 4.0	A
Pulsed collector current, t_p limited by T_{vjmax}	I Cpuls	12.0	A
Turn off safe operating area $V_{CE} \le 600V$, $T_{vj} \le 175^{\circ}C$	-	12.0	A
Diode forward current, limited by T_{vjmax} $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$	ŀ	8.0 4.0	A
Diode pulsed current, t_p limited by T_{vjmax}	Fpuls	12.0	A
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time $V_{GE} = 15.0V, V_{CC} \le 400V, T_{vj} \le 150^{\circ}C$ Allowed number of short circuits < 1000 Time between short circuits: $\ge 1.0s$	<i>t</i> sc	5	μs
Power dissipation $T_{\rm C}$ = 25°C	Ptot	75.0	W
Operating junction temperature	T _{vj}	-40+175	°C
Storage temperature	<i>T</i> _{stg}	-55+175	°C
Soldering temperature, wavesoldering 1.6 mm (0.063 in.) from case for 10s	PG-TO251-3	260	°C
for 10 s (according to JEDEC J-STA-020A)	PG-TO252-3	260	

TRENCHSTOP[™] RC-Series for hard switching applications

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance, junction - case	R _{th(j⁻c)}		2.00	K/W
Diode thermal resistance, junction - case	R _{th(j-c)}		4.50	K/W
Thermal resistance, min. footprint junction - ambient	R _{th(j-a)}	PG-TO252-3	75	K/W
Thermal resistance, 6cm² Cu on PCB junction - ambient	<i>R</i> th(j⁻a)	PG-TO252-3	50	K/W
Thermal resistance junction - ambient	R _{th(j-a)}	PG-TO251-3	75	K/W

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Desemptor	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Static Characteristic	•					
Collector-emitter breakdown voltage	V(BR)CES	V _{GE} = 0V, <i>I</i> _C = 0.20mA	600	-	-	V
Collector-emitter saturation voltage	V∕CEsat	V _{GE} = 15.0V, <i>I</i> _C = 4.0A <i>T</i> _{vj} = 25°C <i>T</i> _{vj} = 175°C		1.65 1.85	2.10	V
Diode forward voltage	Vŧ	V _{GE} = 0V, /= 4.0A 7 _{vj} = 25°C 7 _{vj} = 175°C		1.70 1.70	2.10	V
Gate-emitter threshold voltage	V _{GE(th)}	<i>I</i> _C = 0.07mA, <i>V</i> _{CE} = <i>V</i> _{GE}	4.3	5.0	5.7	V
Zero gate voltage collector current	<i>I</i> ces	$V_{CE} = 600V, V_{GE} = 0V$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$			40.0 1000.0	μA
Gate-emitter leakage current	<i>I</i> GES	<i>V</i> _{CE} = 0V, <i>V</i> _{GE} = 20V	-	-	100	nA
Transconductance	$g_{\sf fs}$	<i>V</i> _{CE} = 20V, <i>I</i> _C = 4.0A	-	2.2	-	S
Integrated gate resistor	<i>ľ</i> G			none		Ω

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Devenueder	Cumb al	Conditions	Value			Unit
Parameter	Symbol Conditions		min.	typ.	max.	Unit
Dynamic Characteristic						
Input capacitance	Cies		-	305	-	
Output capacitance	Coes	$V_{\rm CE} = 25 \text{V}, V_{\rm GE} = 0 \text{V}, \text{f} = 1 \text{MHz}$	-	18	-	pF
Reverse transfer capacitance	Cres		-	9	-]
Gate charge	<i>Q</i> G	V _{CC} = 480V, <i>I</i> _C = 4.0A, V _{GE} = 15V	-	27.0	-	nC
Internal emitter inductance measured 5mm (0.197 in.) from case	LE	PG-TO252-3 PG-TO251-3	-	- 7.0	-	nH

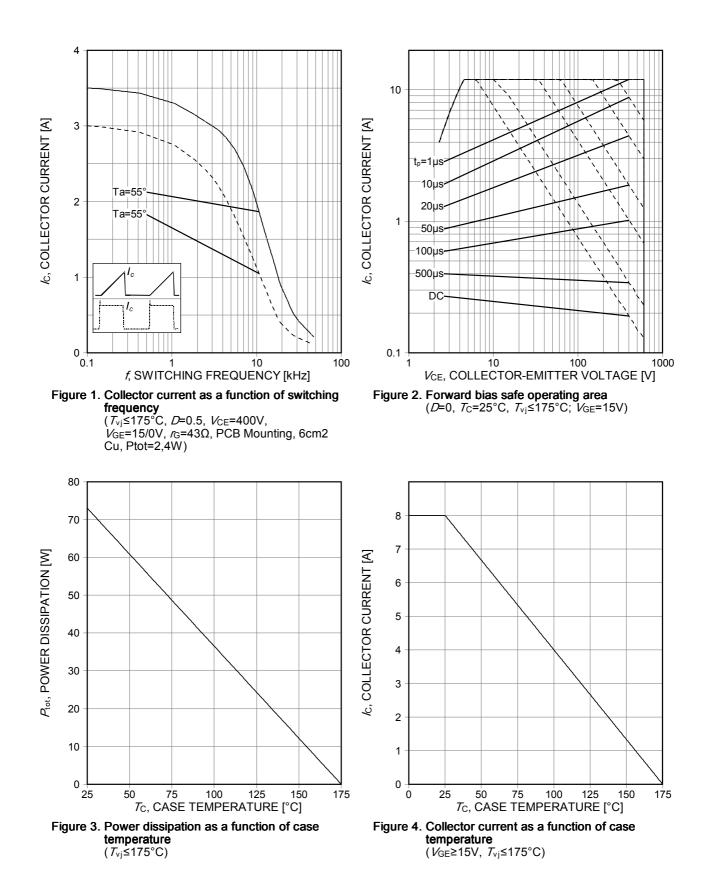
TRENCHSTOP[™] RC-Series for hard switching applications

Switching Characteristic, Inductive Load, at $T_{vj} = 25^{\circ}C$

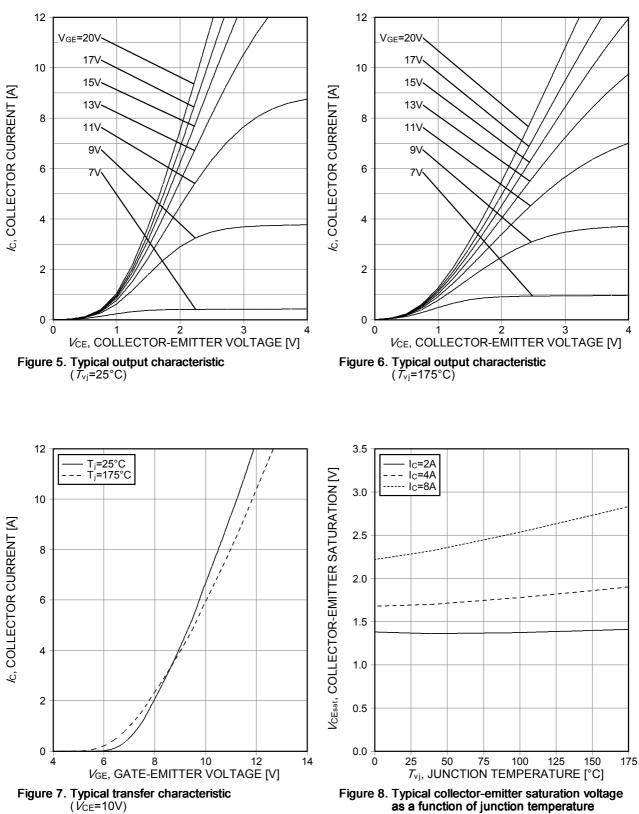
Parameter	Symbol			Value		
		Conditions	min.	typ.	max.	Unit
IGBT Characteristic			·			
Turn-on delay time	İ d(on)	<i>T</i> _{vj} = 25°C,	-	14	-	ns
Rise time	<i>t</i> r	$V_{CC} = 400V, I_C = 4.0A,$ $V_{GE} = 0.0/15.0V,$ $I_G = 43.0\Omega, L_{\sigma} = 60nH,$ $C_{\sigma} = 40pF$ L_{σ}, C_{σ} from Fig. E	-	8	-	ns
Turn-off delay time	<i>t</i> d(off)		-	146	-	ns
Fall time	<i>t</i> f		-	171	-	ns
Turn-on energy	Eon		-	0.09	-	mJ
Turn-off energy	E _{off}		-	0.15	-	mJ
Total switching energy	Ets		-	0.24	-	mJ

Anti-Parallel Diode Characteristic, at $T_{vj} = 25^{\circ}C$

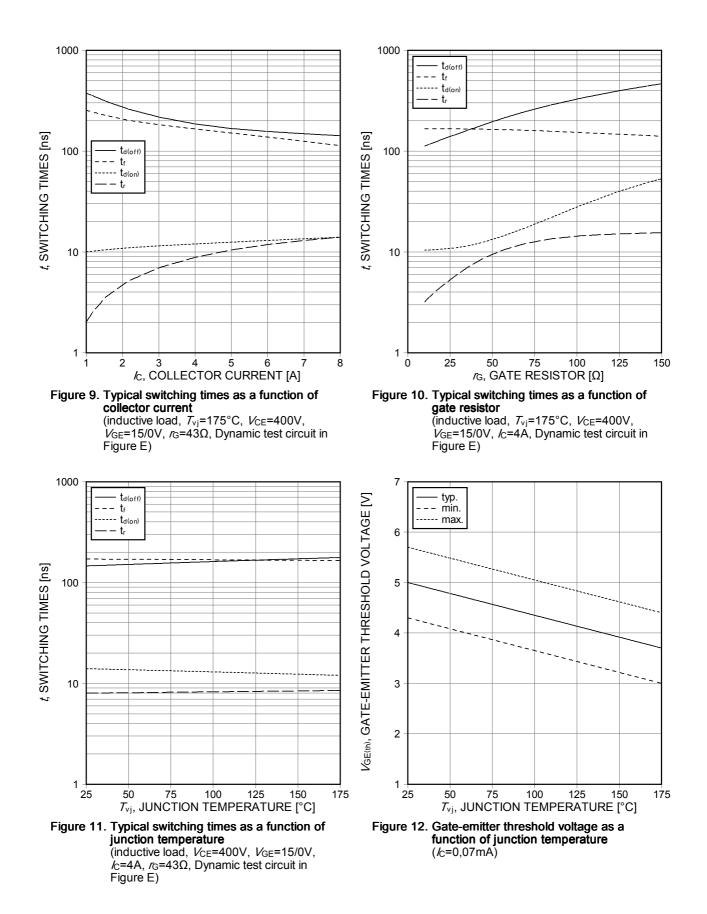
Diode reverse recovery time	<i>t</i> rr	$T_{\rm vj} = 25^{\circ} \rm C,$	-	43	-	ns
Diode reverse recovery charge	Qrr	l∕R = 400V, l≠ = 4.0A,	-	0.22	-	μC
Diode peak reverse recovery current	<i>I</i> rrm	<i>di</i> ⊧ <i>/dt</i> = 600A/µs	-	7.6	-	A
Diode peak rate of fall of reverse recovery current during t _b	di _{rr} /dt		-	-330	-	A/µs

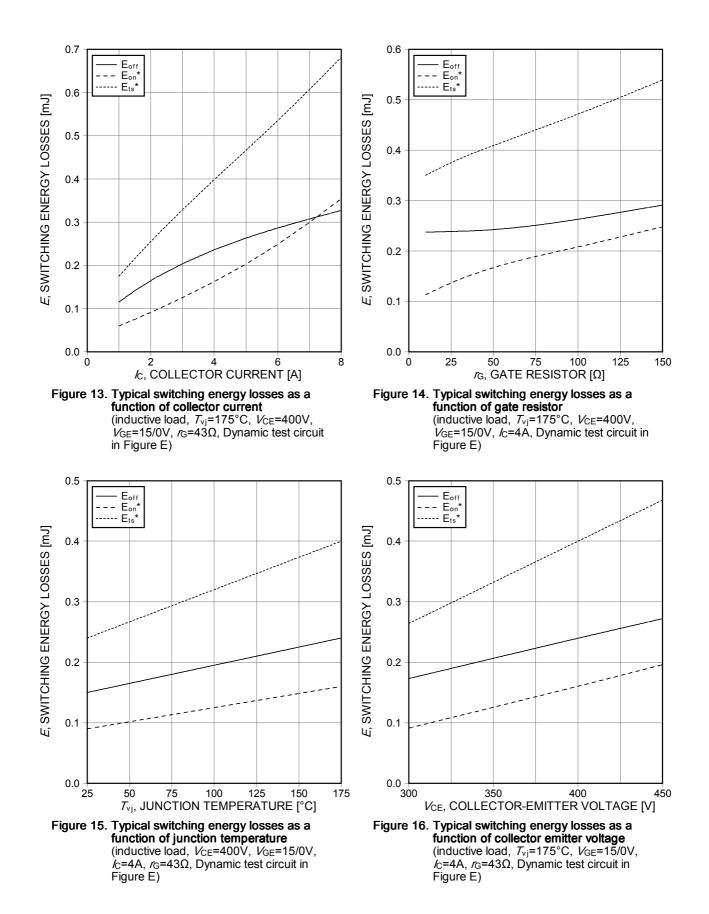

Switching Characteristic, Inductive Load, at T_{vj} = 175°C

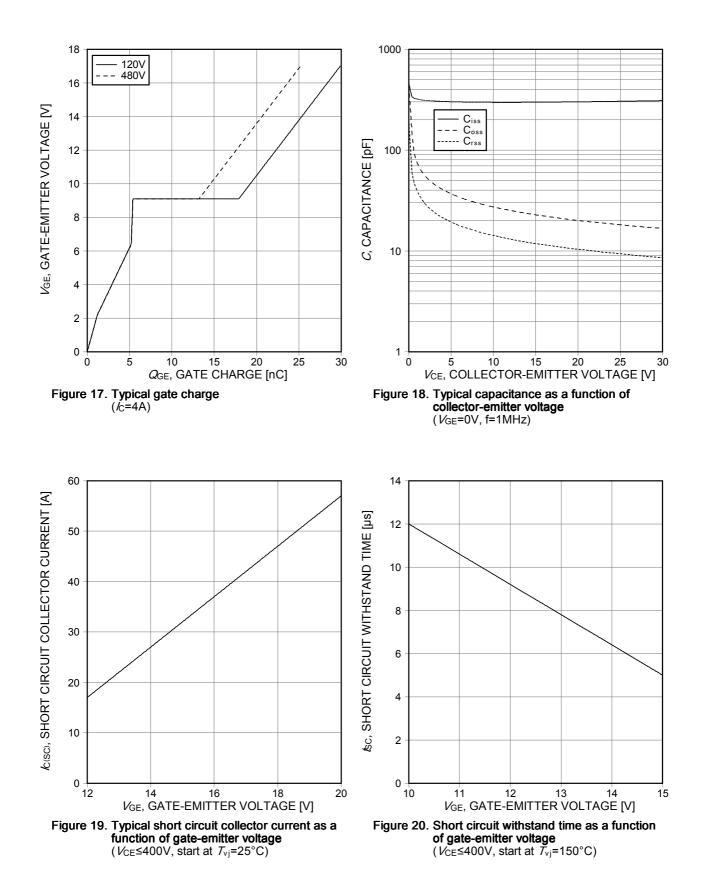
Parameter	Symbol Conditions	O a maliti a ma		Value		
		Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t d(on)	<i>T</i> _{vj} = 175°C,	-	12	-	ns
Rise time	t _r	$V_{CC} = 400V, I_C = 4.0A,$ $V_{GE} = 0.0/15.0V,$	-	8	-	ns
Turn-off delay time	<i>t</i> d(off)	$r_{\rm G}$ = 43.0 Ω , L_{σ} = 60nH,	-	177	-	ns
Fall time	<i>t</i> f	$C_{\sigma} = 40 \text{pF}$ L_{σ}, C_{σ} from Fig. E	-	165	-	ns
Turn-on energy	Eon	20, 00 nom ng. 2	-	0.16	-	mJ
Turn-off energy	Eoff		-	0.24	-	mJ
Total switching energy	Ets		-	0.40	-	mJ

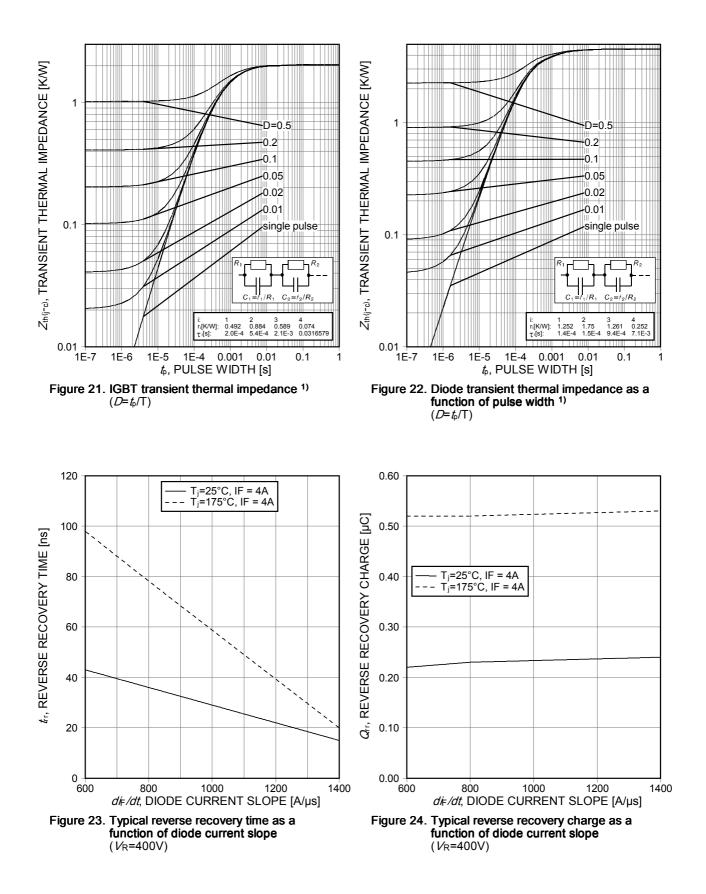

Anti-Parallel Diode Characteristic, at T_{vj} = 175°C

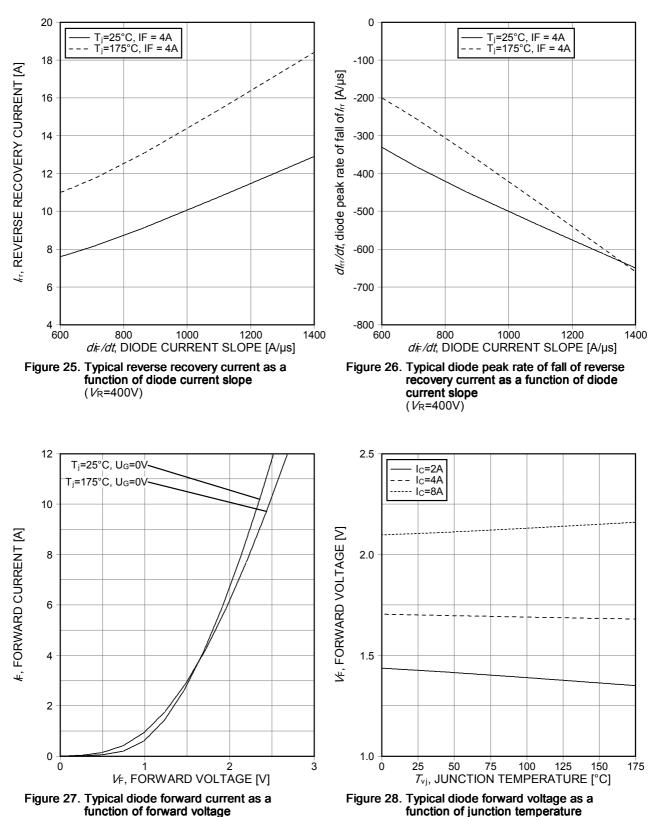
Diode reverse recovery time	<i>t</i> rr	$T_{\rm vj} = 175^{\circ}{\rm C},$	-	98	-	ns
Diode reverse recovery charge	Qrr	V _R = 400V, /= = 4.0A.	-	0.52	-	μC
Diode peak reverse recovery current	<i>I</i> _{rrm}	<i>di</i> ⊧ <i>/dt</i> = 600A/µs	-	11.0	-	Α
Diode peak rate of fall of reverse recovery current during to	di _{rr} /dt		-	-200	-	A/µs

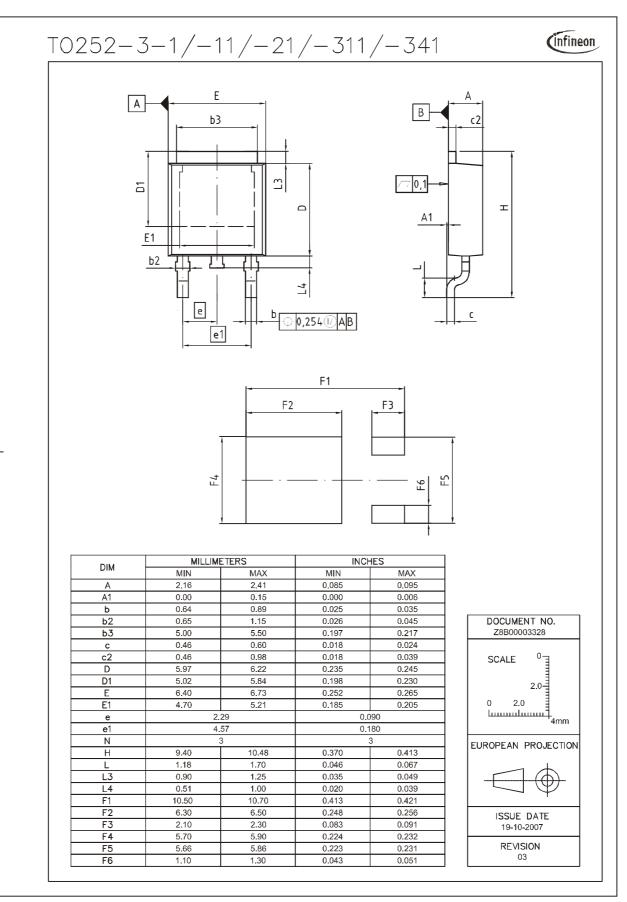


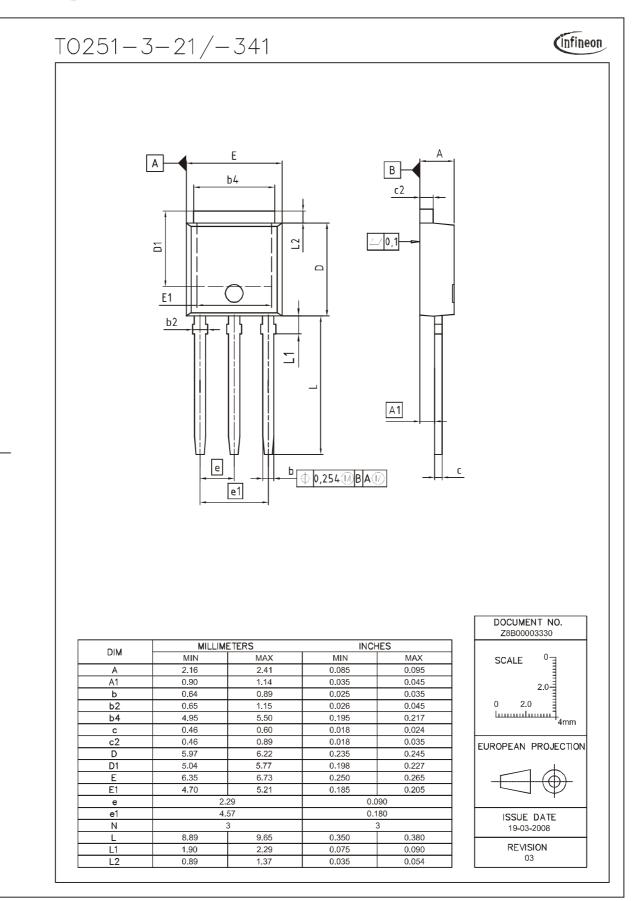




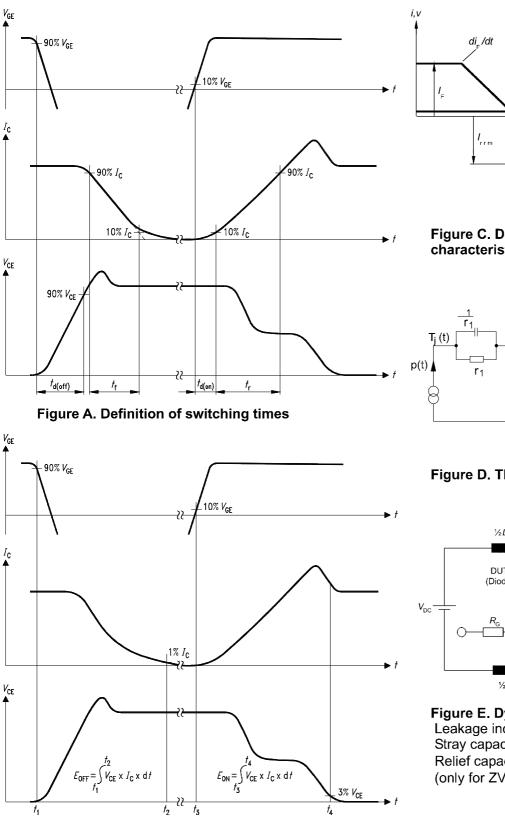








function of forward voltage



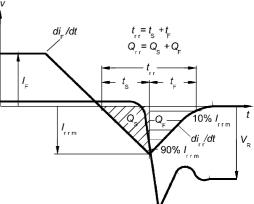


Figure C. Definition of diodes switching characteristics

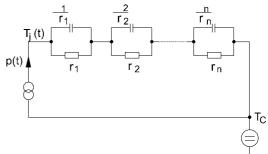


Figure D. Thermal equivalent circuit

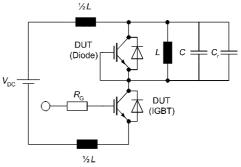


Figure E. Dynamic test circuit Leakage inductance L= 180nH, Stray capacitor C_{σ} = 40pF, Relief capacitor C_{r} = 1nF (only for ZVT switching)

TRENCHSTOP[™] RC-Series for hard switching applications

Published by Infineon Technologies AG 81726 Munich, Germany 81726 München, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

¹⁾ Rth/Zth based on single cooling pulse. Please be aware that a correct Rth measurement of this device, is not possible using a thermocouple.