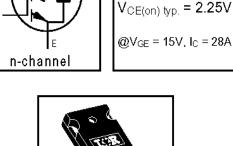
PD-95233

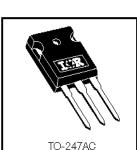
V_{CES} = 900**V**

International

IRG4PF50WDPbF

Rectifier INSULATED GATE BIPOLAR TRANSISTOR WITH


ULTRAFAST SOFT RECOVERY DIODE


Features

- · Optimized for use in Welding and Switch-Mode Power Supply applications
- · Industry benchmark switching losses improve efficiency of all power supply topologies
- · 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- · Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
- IGBT co-packaged with HEXFRED™ ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- · Industry standard TO-247AC package
- Lead-Free

Benefits

- · Lower switching losses allow more cost-effective operation and hence efficient replacement of larger-die MOSFETs up to 100kHz
- HEXFRED[™] diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses
 Absolute Maximum Katings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	900	V
Ic @ Tc = 25°C	Continuous Collector Current	51	
Ic @ Tc = 100°C	Continuous Collector Current	28	Α
Ісм	Pulsed Collector Current ①	204	
I _{LM}	Clamped Inductive Load Current ②	204	
I _F @ T _C = 100°C	Diode Continuous Forward Current	16	
lғм	Diode Maximum Forward Current	204	
V_{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	200	l w
P _D @ T _C = 100°C	Maximum Power Dissipation	78	7 , ,
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 se∞nds	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

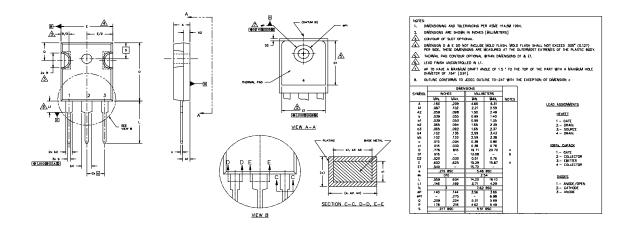
Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Reuc	Junction-to-Case - IGBT			0.64	
R _{eJC}	Junction-to-Case - Diode			0.83	°C/W
R _{ecs}	Case-to-Sink, flat, greased surface	_	0.24		1
Reja	Junction-to-Ambient, typical socket mount			40	
Wt	Weight		6 (0.21)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage®	900			V	$V_{GE} = 0V$, $I_{C} = 250\mu A$
ΔV _{(BR)CES} /ΔΤ _J	Temperature Coeff. of Breakdown Voltage	_	0.295		V/°C	$V_{GE} = 0V, I_{C} = 3.5 mA$
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		2.25	2.7		$I_C = 28A$ $V_{GE} = 15V$
		_	2.74	_	V	I _C = 60A See Fig. 2, 5
		_	2.12	_	İ	I _C = 28A, T _J = 150°C
$V_{GE(th)}$	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}$, $I_C = 250\mu A$
ΔV Œ(th)/ΔΤυ	Temperature Coeff. of Threshold Voltage	_	-13		mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
gfe g	Forward Transconductance €	26	39	_	S	$V_{CE} = 50V$, $I_{C} = 28A$
Ices	Zero Gate Voltage Collector Current		_	500	μΑ	$V_{GE} = 0V, V_{CE} = 900V$
		_	_	2.0		$V_{GE} = 0V, V_{CE} = 10V, T_{J} = 25$ °C
				6.5	mΑ	$V_{GE} = 0V, V_{CE} = 900V, T_{J} = 150^{\circ}C$
V _{FM}	Diode Forward Voltage Drop		2.5	3.5	V	I _C = 16A See Fig. 13
		_	2.1	3.0		I _C = 16A, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	$V_{GE} = \pm 20V$

Switching Characteristics @ $T_J = 25$ °C (unless otherwise specified)


				<u> </u>			
	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)	_	160	240		$I_C = 28A$	
Qge	Gate - Emitter Charge (turn-on)	_	19	29	nC	V _{CC} = 400V See Fig. 8	
Qgc	Gate - Collector Charge (turn-on)	_	53	80]	V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time	_	71	_		T _J = 25°C	
tr	Rise Time	_	50	_	ns	$I_C = 28A$, $V_{CC} = 720V$	
ta(off)	Turn-Off Delay Time	_	150	220		$V_{GE} = 15V, R_{G} = 5.0\Omega$	
tr	Fall Time	_	110	170		Energy losses include "tail" and	
Eon	Turn-On Switching Loss	_	2.63	_		diode reverse recovery.	
E _{off}	Turn-Off Switching Loss	_	1.34	_	mJ	See Fig. 9, 10, 18	
Ets	Total Switching Loss	_	3.97	5.3]		
t _{d(on)}	Turn-On Delay Time		69	_		T _J = 150°C, See Fig. 11, 18	
tr	Rise Time	_	52	_	ns	I _C = 28A, V _{CC} = 720V	
t _{a(off)}	Turn-Off Delay Time	_	270	_	1	$V_{GE} = 15V, R_{G} = 5.0\Omega$	
tr	Fall Time	_	190	_	1	Energy losses include "tail" and	
Ets	Total Switching Loss	_	6.0	_	mJ	diode reverse recovery.	
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package	
Cies	Input Capacitance	_	3300	_		$V_{GE} = 0V$	
Coes	Output Capacitance	_	200	_	рF	$V_{CC} = 30V$ See Fig. 7	
Cres	Reverse Transfer Capacitance	_	45	_]	f = 1.0MHz	
trr	Diode Reverse Recovery Time	_	90	135	ns	T _J = 25°C See Fig.	
		_	164	245		T _J = 125°C 14 l _F = 16A	
I _{rr}	Diode Peak Reverse Recovery Current	_	5.8	10	Α	T _J = 25°C See Fig.	
		_	8.3	15		$T_J = 125^{\circ}C$ 15 $V_R = 200V$	
Qrr	Diode Reverse Recovery Charge	_	260	675	nC	T _J = 25°C See Fig.	
		_	680	1838		T _J = 125°C 16 di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		120		A/µs	T _J = 25°C See Fig.	
	During t _b	_	76	_		T _J = 125°C 17	

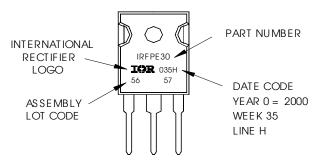
IRG4PF50WDPbF

International IOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information


EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

