ANALOG DEVICES

FEATURES

Wide bandwidth: 15 MHz Low offset voltage: 325 μ V max Low noise: 9.5 nV/ \sqrt{Hz} @ 1 kHz Single-supply operation: 2.7 V to 12 V Rail-to-rail output swing Low TCV₀₅: 1 μ V/°C typ High slew rate: 13 V/ μ s No phase inversion Unity-gain stable

APPLICATIONS

Portable instrumentation Sampling ADC amplifier Wireless LANs Direct access arrangement Office automation

GENERAL DESCRIPTION

The OP162 (single), OP262 (dual), and OP462 (quad) rail-torail 15 MHz amplifiers feature the extra speed new designs require, with the benefits of precision and low power operation. With their incredibly low offset voltage of 45 μ V (typical) and low noise, they are perfectly suited for precision filter applications and instrumentation. The low supply current of 500 μ A (typical) is critical for portable or densely packed designs. In addition, the rail-to-rail output swing provides greater dynamic range and control than standard video amplifiers.

These products operate from single supplies as low as 2.7 V to dual supplies of ± 6 V. The fast settling times and wide output swings recommend them for buffers to sampling A/D converters. The output drive of 30 mA (sink and source) is needed for many audio and display applications; more output current can be supplied for limited durations. The OPx62 family is specified over the extended industrial temperature range (-40° C to $+125^{\circ}$ C). The single OP162 amplifiers are available in 8-lead SOIC, MSOP, and TSSOP packages. The dual OP262 amplifiers are available in 8-lead SOIC and TSSOP packages. The quad OP462 amplifiers are available in 14-lead, narrow-body SOIC and TSSOP packages.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

15 MHz Rail-to-Rail Operational Amplifiers

OP162/OP262/OP462

PIN CONFIGURATIONS

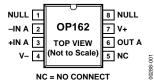


Figure 1. 8-Lead Narrow-Body SOIC (S Suffix)

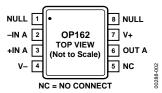


Figure 2. 8-Lead TSSOP (RU Suffix) 8-Lead MSOP (RM Suffix)

+IN A 3 TOP VIEW 6 -IN B	ŝ
V- 4 (Not to Scale) 5 +IN B	-0070

Figure 3. 8-Lead Narrow-Body SOIC (S Suffix)

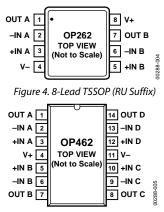


Figure 5. 14-Lead Narrow-Body SOIC (S Suffix)

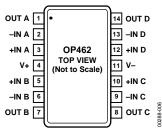


Figure 6. 14-Lead TSSOP (RU Suffix)

SPECIFICATIONS

@ V_{S} = 5.0 V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 1. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	OP162G, OP262G, OP462G		45	325	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			800	μV
		H grade, $-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1	mV
		D grade		0.8	3	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			5	mV
Input Bias Current	IB			360	600	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			650	nA
Input Offset Current	los			±2.5	±25	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			±40	nA
Input Voltage Range	Vсм		0		4	V
Common-Mode Rejection	CMRR	$0 \text{ V} \le \text{V}_{CM} \le 4.0 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	70	110		dB
Large Signal Voltage Gain	Avo	$R_L = 2 \ k\Omega, 0.5 \leq V_{\text{OUT}} \leq 4.5 \ V$		30		V/mV
		$R_{\text{L}} = 10 \; k\Omega, 0.5 \leq V_{\text{OUT}} \leq 4.5 \; \text{V}$	65	88		V/mV
		$R_L = 10 \text{ k}\Omega, -40^\circ\text{C} \leq T_A \leq +125^\circ\text{C}$	40			V/mV
Long-Term Offset Voltage ¹	Vos	G grade			600	μV
Offset Voltage Drift ²	$\Delta V_{os}/\Delta T$			1		μV/°C
Bias Current Drift	$\Delta I_{B}/\Delta T$			250		pA/°C
OUTPUT CHARACTERISTICS						
Output Voltage Swing High	Vон	$I_L = 250 \ \mu A, -40^{\circ}C \le T_A \le +125^{\circ}C$	4.95	4.99		v
		$I_L = 5 \text{ mA}$	4.85	4.94		v
Output Voltage Swing Low	Vol	I _L = 250 μA, −40°C ≤T _A ≤ +125°C		14	50	mV
		$I_L = 5 \text{ mA}$		65	150	mV
Short-Circuit Current	lsc	Short to ground		±80		mA
Maximum Output Current	IOUT			±30		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.7 V \text{ to } 7 V$		120		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	90			dB
Supply Current/Amplifier	Isy	OP162, V _{OUT} = 2.5 V		600	750	μA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1	mA
		OP262, OP462, V _{OUT} = 2.5 V		500	700	μA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			850	μA
DYNAMIC PERFORMANCE						-
Slew Rate	SR	$1 \text{ V} < \text{V}_{\text{OUT}} < 4 \text{ V}, \text{ R}_{\text{L}} = 10 \text{ k}\Omega$		10		V/µs
Settling Time	ts	To 0.1%, $A_V = -1$, $V_O = 2$ V step		540		ns
Gain Bandwidth Product	GBP			15		MHz
Phase Margin	φm			61		Degre
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		9.5		nV/√H
Current Noise Density	i _n	f = 1 kHz		0.4		pA/√F

¹ Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3. ² Offset voltage drift is the average of the -40° C to $+25^{\circ}$ C delta and the $+25^{\circ}$ C to $+125^{\circ}$ C delta.

OP162/OP262/OP462

Table 2. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	OP162G, OP262G, OP462G		50	325	μV
		G, H grades, $-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1	mV
		D grade		0.8	3	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			5	mV
Input Bias Current	IB			360	600	nA
Input Offset Current	los			±2.5	±25	nA
Input Voltage Range	Vсм		0		2	V
Common-Mode Rejection	CMRR	$0~V \leq V_{CM} \leq 2.0~V, -40^\circ C \leq T_A \leq +125^\circ C$	70	110		dB
Large Signal Voltage Gain	Avo	$R_L = 2 \ k\Omega, 0.5 \ V \leq V_{\text{OUT}} \leq 2.5 \ V$		20		V/mV
		$R_L = 10 \ k\Omega, \ 0.5 \ V \leq V_{\text{OUT}} \leq 2.5 \ V$	20	30		V/mV
Long-Term Offset Voltage ¹	Vos	G grade			600	μV
OUTPUT CHARACTERISTICS						
Output Voltage Swing High	Vон	$I_L = 250 \ \mu A$	2.95	2.99		V
		l∟= 5 mA	2.85	2.93		V
Output Voltage Swing Low	Vol	$I_L = 250 \ \mu A$		14	50	mV
		l∟= 5 mA		66	150	mV
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.7 V \text{ to } 7 V$,				
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	60	110		dB
Supply Current/Amplifier	Isy	OP162, V _{OUT} = 1.5 V		600	700	μA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1	mA
		OP262, OP462, V _{OUT} = 1.5 V		500	650	μA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			850	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \ k\Omega$		10		V/µs
Settling Time	ts	To 0.1%, $A_V = -1$, $V_O = 2$ V step		575		ns
Gain Bandwidth Product	GBP			15		MHz
Phase Margin	φm			59		Degrees
NOISE PERFORMANCE						
Voltage Noise	en p-p	0.1 Hz to 10 Hz		0.5		μV p-p
Voltage Noise Density	en	f = 1 kHz		9.5		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.4		pA/√Hz

¹ Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.

@ V_{S} = ±5.0 V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 3. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	OP162G, OP262G, OP462G		25	325	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			800	μV
		H grade, $-40^{\circ}C \le T_A \le +125^{\circ}C$			1	mV
		D grade		0.8	3	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			5	mV
Input Bias Current	Ι _Β			260	500	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			650	nA
Input Offset Current	los			±2.5	±25	nA
·		$-40^{\circ}C \le T_A \le +125^{\circ}C$			±40	nA
Input Voltage Range	V _{CM}		-5		+4	v
Common-Mode Rejection	CMRR	$-4.9 \text{ V} \le \text{V}_{CM} \le +4.0 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	70	110		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega, -4.5 V \le V_{OUT} \le +4.5 V$		35		V/mV
Large signal voltage cam	,	$R_L = 10 \text{ k}\Omega, -4.5 \text{ V} \le V_{OUT} \le +4.5 \text{ V}$	75	120		V/mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	25	120		V/mV
Long-Term Offset Voltage ¹	Vos	G grade	23		600	μV
Offset Voltage Drift ²	Vos ΔVos/ΔT	Gilde		1	000	μV/°C
Bias Current Drift	$\Delta I_{B}/\Delta T$			250		pA/°C
OUTPUT CHARACTERISTICS				250		p/v C
Output Voltage Swing High	Vон	$I_L = 250 \ \mu A$, $-40^{\circ}C \le T_A \le +125^{\circ}C$	4.95	4.99		v
output voltage string right	VON	h = 5 mA	4.85	4.94		v
Output Voltage Swing Low	Vol	$I_L = 250 \ \mu\text{A}, -40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	4.05	-4.99	-4.95	v
output foliage string Lott	• OL	h = 5 mA		-4.94	-4.85	v
Short-Circuit Current	lsc	Short to ground		±80		mA
Maximum Output Current	Іолт			±30		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 1.35 V \text{ to } \pm 6 V$,				
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	60	110		dB
Supply Current/Amplifier	I _{SY}	$OP162, V_{OUT} = 0 V$		650	800	μA
	.51	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1.15	mA
		$OP262, OP462, V_{OUT} = 0 V$		550	775	μA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		550	1	mA
Supply Voltage Range	Vs		3.0 (±1.5)		12 (±6)	V
DYNAMIC PERFORMANCE	• 5		5.0 (±1.5)		12 (±0)	•
Slew Rate	SR	$-4 V < V_{OUT} < 4 V, R_L = 10 k\Omega$		13		V/µs
						-
Settling Time	t₅ GBP	To 0.1%, $A_V = -1$, $V_O = 2$ V step		475 15		ns MHz
Gain Bandwidth Product				15		
Phase Margin	φ _m			64		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.5		μV p-p
Voltage Noise Density	en	f = 1 kHz		9.5		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		0.4		pA/√Hz

¹ Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125°C, with an LTPD of 1.3. ² Offset voltage drift is the average of the -40° C to +25°C delta and the +25°C to +125°C delta.

OP162/OP262/OP462

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Min
Supply Voltage	±6 V
Input Voltage ¹	±6 V
Differential Input Voltage ²	±0.6 V
Internal Power Dissipation	
SOIC (S)	Observe Derating Curves
MSOP (RM)	Observe Derating Curves
TSSOP (RU)	Observe Derating Curves
Output Short-Circuit Duration	Observe Derating Curves
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	–40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature Range (Soldering, 10 sec)	300°C

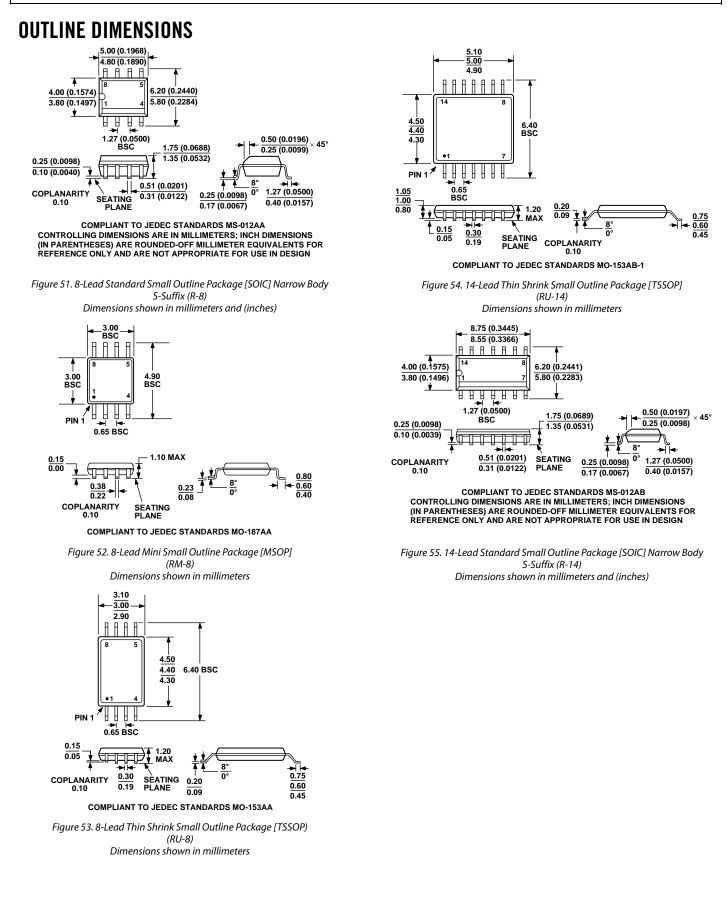
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5.

Package Type	$\theta_{JA}{}^1$	JLθ	Unit
8-Lead SOIC (S)	157	56	°C/W
8-Lead TSSOP (RU)	208		°C/W
8-Lead MSOP (RM)	190	44	°C/W
14-Lead SOIC (S)	105		°C/W
14-Lead TSSOP (RU)	148		°C/W

¹ For supply voltages greater than 6 V, the input voltage is limited to less than or equal to the supply voltage.

² For differential input voltages greater than 0.6 V, the input current should be limited to less than 5 mA to prevent degradation or destruction of the input devices.


 1 θ_{JA} is specified for the worst-case conditions, that is, θ_{JA} is specified for a device soldered in circuit board for SOIC, MSOP, and TSSOP packages.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OP162/OP262/OP462

OP162/0P262/0P462

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
OP162GS	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP162GS-REEL	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP162GS-REEL7	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP162GSZ ¹	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP162GSZ-REEL ¹	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP162GSZ-REEL7 ¹	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP162DRU-REEL	–40°C to +125°C	8-Lead TSSOP	RU-8	
OP162DRUZ-REEL ¹	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP162HRU-REEL	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP162HRUZ-REEL ¹	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP162DRM-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	AND
OP162DRMZ-REEL ¹	-40°C to +125°C	8-Lead MSOP	RM-8	AOJ
OP262DRU-REEL	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP262DRUZ-REEL ¹	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP262GS	–40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP262GS-REEL	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP262GS-REEL7	–40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP262GSZ ¹	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP262GSZ-REEL ¹	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP262GSZ-REEL7 ¹	-40°C to +125°C	8-Lead SOIC	S-Suffix (R-8)	
OP262HRU-REEL	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP262HRUZ-REEL ¹	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP462DRU-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	
OP462DRUZ-REEL ¹	-40°C to +125°C	14-Lead TSSOP	RU-14	
OP462DS	–40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462DS-REEL	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462DS-REEL7	–40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462DSZ ¹	–40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462DSZ-REEL ¹	–40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462DSZ-REEL71	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462GS	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462GS-REEL	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462GS-REEL7	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462GSZ ¹	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462GSZ-REEL ¹	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462GSZ-REEL71	-40°C to +125°C	14-Lead SOIC	S-Suffix (R-14)	
OP462HRU-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	
OP462HRUZ-REEL ¹	–40°C to +125°C	14-Lead TSSOP	RU-14	

¹ Z = Pb-free part.

