

SCES409B-AUGUST 2002-REVISED OCTOBER 2004

| FEATURES                                                                                                                 | DGG, DGV            |                                         |                  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|------------------|
| <ul> <li>Member of the Texas Instruments Widebus™<br/>Family</li> </ul>                                                  | •                   | (OR DE P)                               |                  |
| Ideal for Use in PC133 Register DIMM                                                                                     |                     |                                         | ]GND             |
| <ul> <li>Typical Output Skew &lt;250 ps</li> </ul>                                                                       |                     |                                         | ]NC              |
| <ul> <li>V<sub>CC</sub> = 3.3 V ± 0.3 V Normal Range</li> </ul>                                                          | Y1 [] 3             |                                         | ]A1              |
| • V <sub>CC</sub> = 2.7 V to 3.6 V Extended Range                                                                        | GND [] 4<br>Y2 [] 5 |                                         | ]GND<br>]A2      |
| • $V_{CC} = 2.5 V \pm 0.2 V$                                                                                             | Y3 [] 6             | 1                                       | ]A2<br>]A3       |
| <ul> <li>Rail-to-Rail Output Swing for Increased Noise</li> </ul>                                                        |                     | r                                       | ]V <sub>CC</sub> |
| Margin                                                                                                                   | Υ <u>Υ</u> ΥΥ       |                                         | ]A4              |
| <ul> <li>Balanced Output Drivers ±18 mA</li> </ul>                                                                       | Y5 [] S             | t                                       | ]A5              |
| -                                                                                                                        | Y6 🛛 1              |                                         | ]A6              |
| Low Switching Noise                                                                                                      | GND 🛛 1             |                                         | GND              |
| Latch-Up Performance Exceeds 100 mA Per                                                                                  | Y7 🚺 1              | 12 45                                   | A7               |
| JESD 78, Class II                                                                                                        | Y8 🚺 1              | 13 44                                   | ] A8             |
| ESD Protection Exceeds JESD 22                                                                                           | Y9 🛽 1              |                                         | A9               |
| – 2000-V Human-Body Model (A114-A)                                                                                       | Y10 🛛 1             |                                         | A10              |
| – 200-V Machine Model (A115-A)                                                                                           | Y11 [] 1            |                                         | A11              |
| <ul> <li>– 1000-V Charged-Device Model (C101)</li> </ul>                                                                 | Y12 1               |                                         | A12              |
|                                                                                                                          |                     | r                                       | ]GND             |
| DESCRIPTION/ORDERING INFORMATION                                                                                         |                     |                                         | ]A13             |
| This 18-bit universal bus driver is designed for                                                                         | Y14 2<br>Y15 2      | r i i i i i i i i i i i i i i i i i i i | ]A14<br>]A15     |
| 2.3-V to 3.6-V V <sub>CC</sub> operation.                                                                                |                     | r                                       | ]V <sub>CC</sub> |
| Data flow from A to Y is controlled by the                                                                               | Y16 2               |                                         | ]A16             |
| output-enable $(\overline{OE})$ input. The device operates in the                                                        | Y17 1 2             | r                                       | ]A17             |
| transparent mode when the latch-enable (LE) input is                                                                     |                     |                                         | ]GND             |
| low. When $\overline{\text{LE}}$ is high, the A data is latched if the                                                   | Y18 2               |                                         | A18              |
| clock (CLK) input is held at a high or low logic level. If<br>LE is high, the A data is stored in the latch/flip-flop on |                     | 27 30                                   | ]CLK             |
| the low-to-high transition of CLK. When $\overline{OE}$ is high.                                                         |                     | 28 29                                   | ]GND             |

NC - No internal connection

The ALVCF162834 has series damping resistors in the device output structure that reduce switching noise in 128-MB and 256-MB SDRAM modules. Designed with a drive capability of ±18 mA, this device is a midway drive between the ALVC162834 (±12 mA) and ALVC16834 (±24 mA).

The SN74ALVCF162834 is a faster version of the SN74ALVC162834. It is suitable for PC133 applications, particularly for SDRAM modules clocked at 133 MHz.

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

| T <sub>A</sub> | PA          | CKAGE <sup>(1)</sup> | ORDERABLE PART NUMBER | TOP-SIDE MARKING |  |  |  |  |  |  |  |  |
|----------------|-------------|----------------------|-----------------------|------------------|--|--|--|--|--|--|--|--|
|                | SSOP - DL   | Tube                 | SN74ALVCF162834DL     | ALVCF162834      |  |  |  |  |  |  |  |  |
| -40°C to 85°C  | 550P - DL   | Tape and reel        | SN74ALVCF162834DLR    | - ALVUF 102034   |  |  |  |  |  |  |  |  |
| -40 C 10 85 C  | TSSOP - DGG | Tape and reel        | SN74ALVCF162834GR     | ALVCF162834      |  |  |  |  |  |  |  |  |
|                | TVSOP - DGV | Tape and reel        | SN74ALVCF162834VR     | VF162834         |  |  |  |  |  |  |  |  |

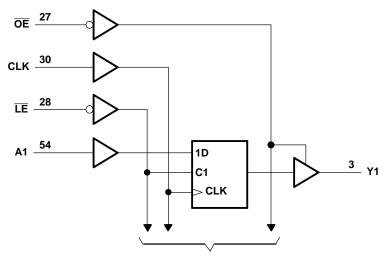
#### **ORDERING INFORMATION**

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1)www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

the low-to-high transition of CLK. When  $\overline{OE}$  is high,


the outputs are in the high-impedance state.

SCES409B-AUGUST 2002-REVISED OCTOBER 2004

|    | INP | UTS        |   | OUTPUT                        |
|----|-----|------------|---|-------------------------------|
| ŌĒ | LE  | CLK        | Α | Y                             |
| Н  | Х   | Х          | Х | Z                             |
| L  | L   | х          | L | L                             |
| L  | L   | х          | Н | н                             |
| L  | Н   | $\uparrow$ | L | L                             |
| L  | Н   | $\uparrow$ | Н | н                             |
| L  | Н   | L or H     | Х | Y <sub>0</sub> <sup>(1)</sup> |

#### **FUNCTION TABLE**

(1) Output level before the indicated steady-state conditions were established



## LOGIC DIAGRAM (POSITIVE LOGIC)

To 17 Other Channels



SCES409B-AUGUST 2002-REVISED OCTOBER 2004

## **ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>**

over operating free-air temperature range (unless otherwise noted)

|                  |                                                       |                    | MIN  | MAX                   | UNIT |
|------------------|-------------------------------------------------------|--------------------|------|-----------------------|------|
| V <sub>CC</sub>  | Supply voltage range                                  |                    | -0.5 | 4.6                   | V    |
| VI               | Input voltage range <sup>(2)</sup>                    |                    | -0.5 | 4.6                   | V    |
| Vo               | Output voltage range <sup>(2)(3)</sup>                |                    | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                                   | V <sub>1</sub> < 0 |      | -50                   | mA   |
| I <sub>OK</sub>  | Output clamp current V <sub>O</sub> < 0               |                    |      | -50                   | mA   |
| I <sub>O</sub>   | Continuous output current                             |                    |      | ±50                   | mA   |
|                  | Continuous current through each V <sub>CC</sub> or GN | ID                 |      | ±100                  | mA   |
|                  |                                                       | DGG package        |      | 64                    |      |
| $\theta_{JA}$    | Package thermal impedance <sup>(4)</sup>              | DGV package        |      | 48                    | °C/W |
|                  |                                                       | DL package         |      | 56                    |      |
| T <sub>stg</sub> | Storage temperature range                             | -65                | 150  | °C                    |      |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

## **RECOMMENDED OPERATING CONDITIONS**<sup>(1)</sup>

|                     |                                    |                                  | MIN | MAX             | UNIT |  |  |  |
|---------------------|------------------------------------|----------------------------------|-----|-----------------|------|--|--|--|
| V <sub>CC</sub>     | Supply voltage                     |                                  | 2.3 | 3.6             | V    |  |  |  |
| V                   | Llich lovel input voltoge          | V <sub>CC</sub> = 2.3 V to 2.7 V | 1.7 |                 | V    |  |  |  |
| V <sub>IH</sub>     | High-level input voltage           | $V_{CC}$ = 2.7 V to 3.6 V        | 2   |                 | v    |  |  |  |
| V                   |                                    | $V_{CC}$ = 2.3 V to 2.7 V        |     | 0.7             | V    |  |  |  |
| V <sub>IL</sub>     | Low-level input voltage            | $V_{CC}$ = 2.7 V to 3.6 V        |     | 0.8             | v    |  |  |  |
| VI                  | Input voltage                      |                                  | 0   | V <sub>CC</sub> | V    |  |  |  |
| Vo                  | Output voltage                     |                                  | 0   | V <sub>CC</sub> | V    |  |  |  |
|                     |                                    | V – 2.2 V                        |     | -6              |      |  |  |  |
|                     | High-level output current          | V <sub>CC</sub> = 2.3 V          |     | -8              |      |  |  |  |
| I                   |                                    | V <sub>CC</sub> = 2.7 V          |     | -6              |      |  |  |  |
| I <sub>OH</sub>     |                                    | $v_{\rm CC} = 2.7 v$             |     | -12             | mA   |  |  |  |
|                     |                                    | $V_{CC} = 3 V$                   |     | -8              |      |  |  |  |
|                     |                                    | $v_{\rm CC} = 3 v$               |     | -18             |      |  |  |  |
|                     |                                    | V <sub>CC</sub> = 2.3 V          |     | 6               |      |  |  |  |
|                     |                                    | $v_{CC} = 2.3 v$                 |     | 8               |      |  |  |  |
|                     |                                    | V 07V                            |     | 6               |      |  |  |  |
| I <sub>OL</sub>     | Low-level output current           | $V_{CC} = 2.7 V$                 |     | 12              | mA   |  |  |  |
|                     |                                    | <u> </u>                         |     | 8               |      |  |  |  |
|                     |                                    | $V_{CC} = 3 V$                   |     | 18              |      |  |  |  |
| $\Delta t/\Delta v$ | Input transition rise or fall rate |                                  |     | 10              | ns/V |  |  |  |
| T <sub>A</sub>      | Operating free-air temperature     |                                  | -40 | 85              | °C   |  |  |  |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES409B-AUGUST 2002-REVISED OCTOBER 2004

## **ELECTRICAL CHARACTERISTICS**

over recommended operating free-air temperature range (unless otherwise noted)

| Р                | ARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEST CONDITIONS                                                | V <sub>cc</sub> | MIN                   | TYP <sup>(1)</sup> | MAX  | UNIT |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|-----------------------|--------------------|------|------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OH</sub> = -0.1 mA                                      | 2.3 V to 3.6 V  | V <sub>CC</sub> - 0.2 |                    |      |      |
|                  | /он   I <sub>OH</sub> =<br> I <sub>OL</sub> =  I <sub>OL</sub> | I <sub>OH</sub> = -6 mA                                        | 2.3 V           | 1.9                   |                    |      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OH</sub> = -8 mA                                        | 2.3 V           | 1.7                   |                    |      |      |
| V <sub>OH</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OH</sub> = -6 mA                                        | 2.7 V           | 2.2                   |                    |      | V    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OH</sub> = -12 mA                                       | 2.7 V           | 2                     |                    |      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OH</sub> = -8 mA                                        | 2 \/            | 2.4                   |                    |      |      |
|                  | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                 |                       |                    |      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OL</sub> = 0.1 mA                                       | 2.3 V to 3.6 V  |                       |                    | 0.2  |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OL</sub> = 6 mA                                         | 2.2.1/          |                       |                    | 0.4  |      |
|                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I <sub>OL</sub> = 8 mA                                         | 2.3 V           |                       |                    | 0.55 |      |
| V <sub>OL</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OL</sub> = 6 mA                                         | 2.7 V           |                       |                    | 0.4  | V    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OL</sub> = 12 mA                                        | 2.7 V           |                       |                    | 0.6  |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OL</sub> = 8 mA                                         | 2.14            |                       |                    | 0.55 |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>OL</sub> = 18 mA                                        | 3 V             |                       |                    | 0.8  |      |
| V <sub>IK</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>CC</sub> = 2.3 V, I <sub>I</sub> = -18 mA               | 3.6 V           |                       |                    | -1.2 | V    |
| V <sub>hys</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>CC</sub> = 3.6 V                                        | 3.6 V           |                       | 100                |      | mV   |
| I <sub>I</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{I} = V_{CC} \text{ or } GND$                               | 3.6 V           |                       |                    | ±5   | μΑ   |
| I <sub>OZ</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{O} = V_{CC}$ or GND                                        | 3.6 V           |                       |                    | ±10  | μΑ   |
| I <sub>CC</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{I} = V_{CC} \text{ or GND}, I_{O} = 0$                     | 3.6 V           |                       | 0.1                | 40   | μΑ   |
| $\Delta I_{CC}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | One input at $V_{CC}$ - 0.6 V, Other inputs at $V_{CC}$ or GND | 3 V to 3.6 V    |                       |                    | 750  | μA   |
| Ci               | Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{I} = 0 V$                                                  | 3.3 V           |                       | 3                  |      | pF   |
| Co               | Outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_0 = 0 V$                                                    | 3.3 V           |                       | 4                  |      | pF   |

(1) All typical values are at V\_{CC} = 3.3 V, T\_A = 25 ^{\circ}C.

## TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 and Figure 2)

|                                    |                |                  |                 | V <sub>CC</sub> =<br>± 0.2 | $V_{CC}$ = 2.5 V<br>$\pm$ 0.2 V |     | 2.7 V | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |     | UNIT |  |
|------------------------------------|----------------|------------------|-----------------|----------------------------|---------------------------------|-----|-------|------------------------------------|-----|------|--|
|                                    |                |                  |                 | MIN                        | MAX                             | MIN | MAX   | MIN                                | MAX |      |  |
| f <sub>clock</sub> Clock frequency |                |                  |                 |                            | 150                             |     | 150   |                                    | 150 | MHz  |  |
| t Dulas duration                   |                | LE low           |                 | 3.3                        |                                 | 3.3 |       | 3.3                                |     | 20   |  |
| t <sub>w</sub>                     | Pulse duration | CLK high or low  | 3.3             |                            | 3.3                             |     | 3.3   |                                    | ns  |      |  |
|                                    |                | Data before CLK↑ |                 | 1.8                        |                                 | 1.5 |       | 1                                  |     |      |  |
| t <sub>su</sub>                    | Setup time     | Data before LE↑  | CLK high        | 1.9                        |                                 | 1.6 |       | 1.5                                |     | ns   |  |
|                                    |                | Data before LE   | CLK low         | 1.3                        |                                 | 1.1 |       | 1                                  |     |      |  |
|                                    | the Hold time  | Data after CLK↑  |                 | 0.6                        |                                 | 0.6 |       | 0.6                                |     |      |  |
| чh                                 |                | Data after LE↑   | CLK high or low | 1.4                        |                                 | 1.7 |       | 1.4                                |     | ns   |  |



SCES409B-AUGUST 2002-REVISED OCTOBER 2004

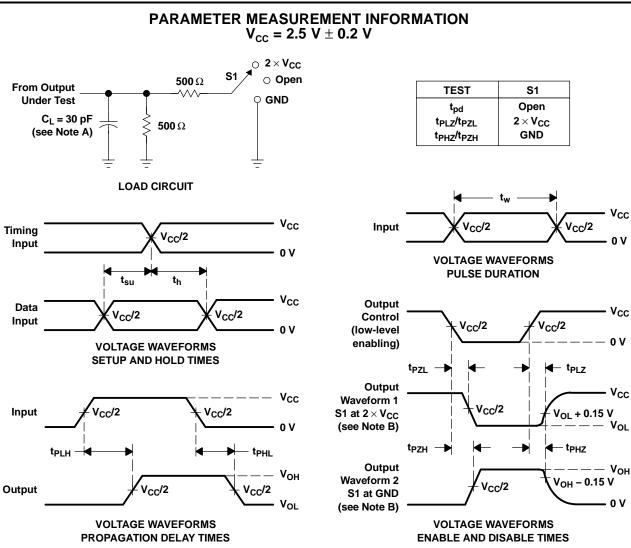
## SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 and Figure 2)

| PARAMETER          | FROM<br>(INPUT) | TO       | - U.Z V |     | V <sub>CC</sub> = 2 |     |     | .3 V<br>V | UNIT |
|--------------------|-----------------|----------|---------|-----|---------------------|-----|-----|-----------|------|
|                    |                 | (OUTPUT) | MIN     | MAX | MIN                 | MAX | MIN | MAX       |      |
| f <sub>max</sub>   |                 |          | 150     |     | 150                 |     | 150 |           | MHz  |
|                    | А               |          | 1       | 4   |                     | 4.6 | 1   | 3.5       |      |
| t <sub>pd</sub>    | LE              | Y        | 1.3     | 5.5 |                     | 5.4 | 1.3 | 4.6       | ns   |
|                    | CLK             |          | 1.4     | 5.9 |                     | 5.6 | 1.4 | 3.5       |      |
| t <sub>en</sub>    | OE              | Y        | 1.4     | 5.9 |                     | 6   | 1.1 | 5         | ns   |
| t <sub>dis</sub>   | OE              | Y        | 1       | 4.7 |                     | 4.6 | 1.3 | 4.2       | ns   |
| t <sub>sk(o)</sub> |                 |          |         |     |                     |     |     | 500       | ps   |

## SWITCHING CHARACTERISTICS

from 0°C to 65°C,  $C_L = 50 \text{ pF}$ 


| PARAMETER       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 3.<br>± 0.15 | UNIT |    |
|-----------------|-----------------|----------------|--------------------------------|------|----|
|                 | (14-01)         | (001-01)       | MIN                            | MAX  |    |
| t <sub>pd</sub> | CLK             | Y              | 1.8                            | 3.5  | ns |

## **OPERATING CHARACTERISTICS**

 $T_A = 25^{\circ}C$ 

|                                               | PARAMETER        |                                 | TEST CONDITIONS  | V <sub>CC</sub> = 2.5 V<br>TYP | V <sub>CC</sub> = 3.3 V<br>TYP | UNIT |  |
|-----------------------------------------------|------------------|---------------------------------|------------------|--------------------------------|--------------------------------|------|--|
| C Devues dissinction conseitence              |                  | Outputs enabled                 | C = 0 f = 10 MHz | 28                             | 33                             | pF   |  |
| C <sub>pd</sub> Power dissipation capacitance | Outputs disabled | $C_{L} = 0, f = 10 \text{ MHz}$ | 16               | 21                             |                                |      |  |

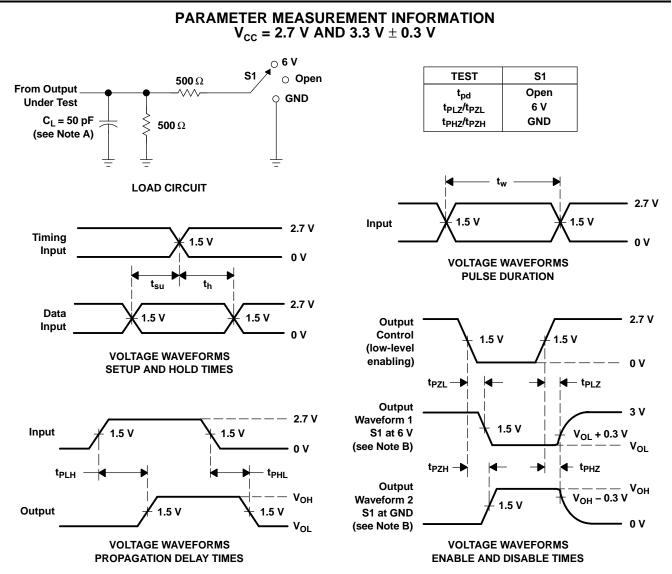
SCES409B-AUGUST 2002-REVISED OCTOBER 2004



TEXAS IRUMENTS

www.ti.com

NOTES: A. C<sub>L</sub> includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2 ns, t<sub>f</sub>  $\leq$  2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G. t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>.

#### Figure 1. Load Circuit and Voltage Waveforms

### IEXAS **TRUMENTS** www.ti.com

# SN74ALVCF162834 3.3-V CMOS 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

SCES409B-AUGUST 2002-REVISED OCTOBER 2004



NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns. The outputs are measured one at a time, with one transition per measurement.
- D.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .

Figure 2. Load Circuit and Voltage Waveforms

## **PACKAGING INFORMATION**

| Orderable Device  | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|-------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| 74ALVCF162834DLG4 | ACTIVE                | SSOP            | DL                 | 56   | 20             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| 74ALVCF162834GRE4 | ACTIVE                | TSSOP           | DGG                | 56   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| 74ALVCF162834GRG4 | ACTIVE                | TSSOP           | DGG                | 56   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| 74ALVCF162834LRG4 | ACTIVE                | SSOP            | DL                 | 56   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| 74ALVCF162834VRE4 | ACTIVE                | TVSOP           | DGV                | 56   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| 74ALVCF162834VRG4 | ACTIVE                | TVSOP           | DGV                | 56   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALVCF162834DL | ACTIVE                | SSOP            | DL                 | 56   | 20             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALVCF162834GR | ACTIVE                | TSSOP           | DGG                | 56   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALVCF162834LR | ACTIVE                | SSOP            | DL                 | 56   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74ALVCF162834VR | ACTIVE                | TVSOP           | DGV                | 56   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

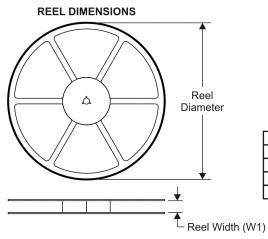
**OBSOLETE:** TI has discontinued the production of the device.

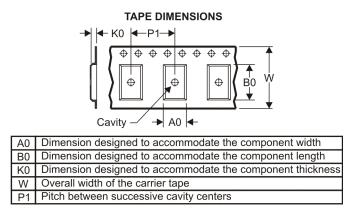
<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

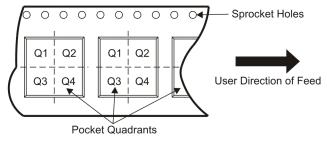
**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

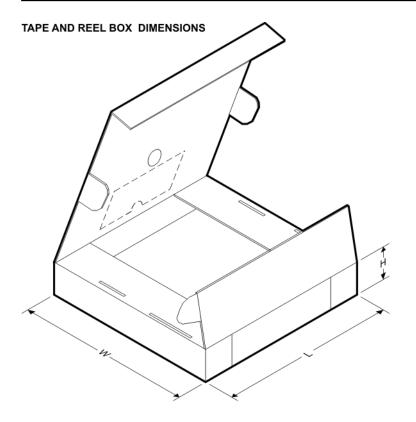

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal | All dimensions are nominal |                    |    |      |                          |                          |         |         |         |            |           |                  |
|-----------------------------|----------------------------|--------------------|----|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|------------------|
| Device                      | Package<br>Type            | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74ALVCF162834GR           | TSSOP                      | DGG                | 56 | 2000 | 330.0                    | 24.4                     | 8.6     | 15.6    | 1.8     | 12.0       | 24.0      | Q1               |
| SN74ALVCF162834LR           | SSOP                       | DL                 | 56 | 1000 | 330.0                    | 32.4                     | 11.35   | 18.67   | 3.1     | 16.0       | 32.0      | Q1               |
| SN74ALVCF162834VR           | TVSOP                      | DGV                | 56 | 2000 | 330.0                    | 24.4                     | 6.8     | 11.7    | 1.6     | 12.0       | 24.0      | Q1               |



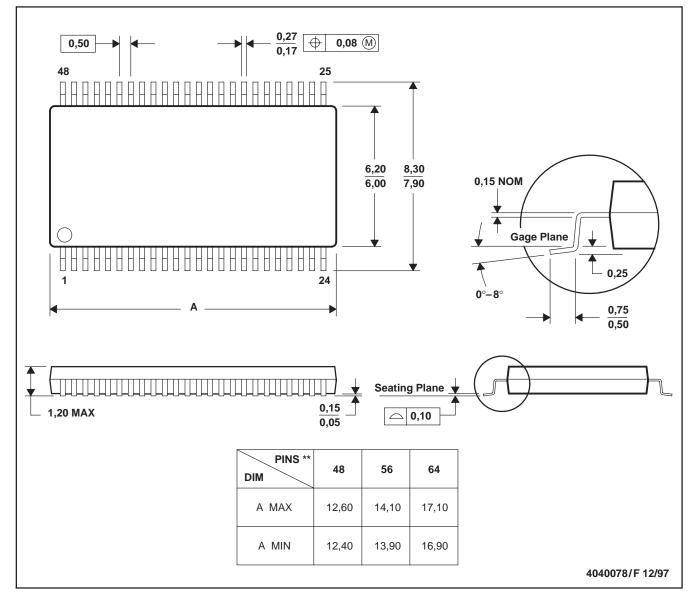
# PACKAGE MATERIALS INFORMATION

11-Mar-2008



\*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74ALVCF162834GR | TSSOP        | DGG             | 56   | 2000 | 346.0       | 346.0      | 41.0        |
| SN74ALVCF162834LR | SSOP         | DL              | 56   | 1000 | 346.0       | 346.0      | 49.0        |
| SN74ALVCF162834VR | TVSOP        | DGV             | 56   | 2000 | 346.0       | 346.0      | 41.0        |


# **MECHANICAL DATA**

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

### DGG (R-PDSO-G\*\*)

### PLASTIC SMALL-OUTLINE PACKAGE

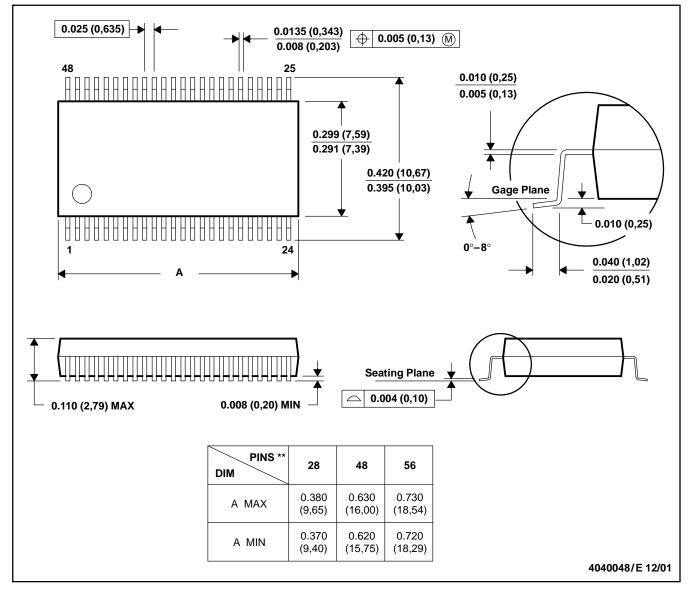
**48 PINS SHOWN** 



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153




# **MECHANICAL DATA**

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

#### PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

DL (R-PDSO-G\*\*)



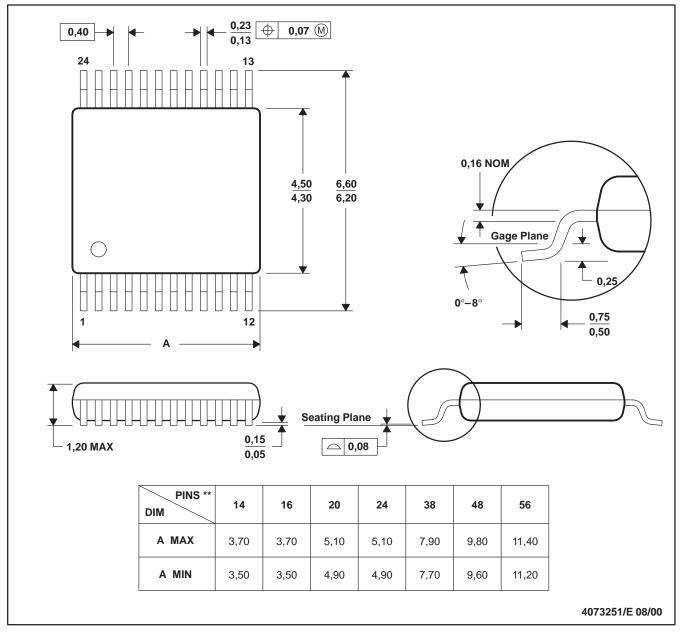
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118




# **MECHANICAL DATA**

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

## DGV (R-PDSO-G\*\*)

24 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications       |                           |
|-----------------------------|------------------------|--------------------|---------------------------|
| Amplifiers                  | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters             | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP                         | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Clocks and Timers           | www.ti.com/clocks      | Digital Control    | www.ti.com/digitalcontrol |
| Interface                   | interface.ti.com       | Medical            | www.ti.com/medical        |
| Logic                       | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt                  | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers            | microcontroller.ti.com | Security           | www.ti.com/security       |
| RFID                        | www.ti-rfid.com        | Telephony          | www.ti.com/telephony      |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video & Imaging    | www.ti.com/video          |
|                             |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated