

T3035H, T3050H

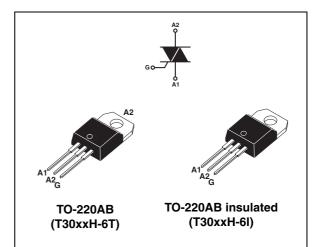
Snubberless[™] high temperature 30 A Triacs

Features

- High current Triac
- High immunity level
- Low thermal resistance with clip bounding
- RoHS (2002/95/EC) compliant package
- Very high commutation (3Q) at 150 °C capability

Applications

Thanks to its high electrical noise immunity level and its strong current robustness, the T30xxH series is designed for the control of AC actuators in appliances and industrial systems.


Description

Specifically designed to operate at 150 °C, the new 30 A T30xxH Triacs provide very high dynamic performance and enhanced performance in terms of power loss and thermal dissipation. This allows optimizing the heatsink size, leading to space and cost effectiveness when compared to electro-mechanical solutions.

Based on ST Snubberless[™] technology, they offer a specified minimal commutation and high noise immunity levels valid up to the Tj max.

The T30xxH series optimize safely the control of universal motors and of inductive loads found in power tools and major appliances.

By using an internal ceramic pad, the T30xxH-6l provides voltage insulation (rated at 2500 V rms).

Table 1. Device summary

I _{T(rms)}	30	А
V _{DRM} /V _{RRM}	600	V
I _{GT}	30 or 50	mA

TM: Snubberless is a trademark of STMicroelectronics

1 Characteristics

	Absolute maximum rating				
Symbol	Paramete	Value	Unit		
		TO-220AB	T _c = 121 °C		
I _{T(RMS)}	On-state rms current (full sine wave)	TO-220AB insul.	T _c = 92 °C	30	A
1	Non repetitive surge peak on-state	F = 50 Hz	t = 20 ms	270	А
I _{TSM}	current (full cycle, T_j initial = 25 °C)	F = 60 Hz	t = 16.7 ms	284	A
l ² t	I ² t Value for fusing	ing t _p = 10 ms		487	A ² s
dl/dt	Critical rate of rise of on-state current I_G = 2 x I_{GT} , t_r \leq 100 ns	F = 120 Hz	T _j = 150 °C	50	A/µs
V _{DSM} / V _{RSM}	Non repetitive surge peak off-state volt-age $t_p = 10 \ \mu s$		T _j = 25 °C	V _{DSM} /V _{RSM} +100	V
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	А
P _{G(AV)}	Average gate power dissipation $T_j = 150 \ ^{\circ}C$		1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			-40 to +150 -40 to +150	°C

Table 2. Absolute maximum rating

Table 3.Electrical characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test conditions	Quadrant		Va	lue	Unit
Symbol	Test conditions	Quadrant		T3035H	T3050H	Onit
I _{GT} ⁽¹⁾	$V_{D} = 12 V R_{I} = 33 \Omega$	- -	MAX.	35	50	mA
V _{GT}	AD = 15 A U = 22.75	- -	MAX.	1.0		V
V _{GD}	$V_{D} = V_{DRM} R_{L} = 3.3 \text{ k}\Omega \qquad \qquad I - II - III$		MIN.	0.15		V
I _H ⁽²⁾	I _T = 500 mA		MAX.	60	75	mA
		1 - 111	MAX.	75	90	mA
١L	$I_{G} = 1.2 I_{GT}$	II		90	110	
dV/dt ⁽²⁾	$V_{D} = 67 \% V_{DRM}$ gate open	T _j = 150 °C	MIN.	1000	1500	V/µs
(dl/dt)c (2)	Without snubber	T _j = 150 °C	MIN.	33	44	A/ms

1. Minimum I_{GT} is guaranted at 20 % of I_{GT} max.

2. For both polarities of A2 referenced to A1.

	Static characteristics				
Symbol	Test conditions		Value	Unit	
V_{TM} ⁽¹⁾	I _{TM} = 42 A t _p = 380 μs	T _j = 25 °C	MAX.	1.55	V
V _{to} ⁽¹⁾	Threshold voltage	T _j = 150 °C	MAX.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	MAX.	15	mΩ
	М – М	T _j = 25 °C	MAX.	10	μA
I _{DRM}	V _{DRM} = V _{RRM}	T _j = 150 °C		8.5	
I _{RRM}	$V_D/V_R = 400V$ (at peak mains voltage)	T _j = 150 °C		7	mA
	$V_D/V_R = 200V$ (at peak mains voltage)	ms voltage) $T_j = 150 \text{ °C}$ MAX.		5.5	

Table 4.Static characteristics

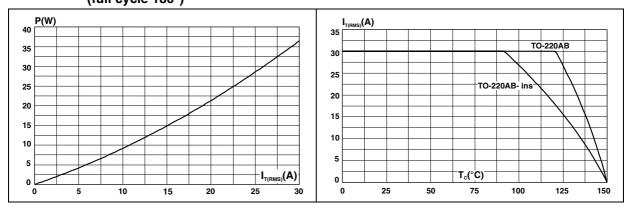
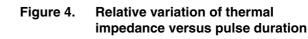

1. for both polarities of A2 referenced to A1.

Table 5.Thermal resistance

Symbol	Parameter		Value	Unit
D	Junction to case (AC)	TO-220AB	0.8	°C/W
R _{th(j-c)}	Sunction to case (AC)	TO-220AB Insul	1.6	C/W
R _{th(j-a)}	Junction to ambient	TO-220AB / TO-220AB Insul	60	°C/W


Figure 1. Maximum power dissipation versus Figure 2. rms on-state current (full cycle 180°)

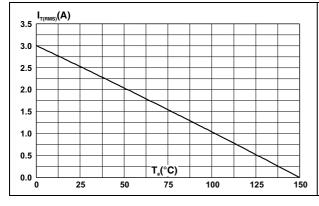

On-state rms current vs case temperature

Figure 3. On-state rms current versus ambient temperature (free air convection)

Figure 5. Relative variation of gate trigger current and gate trigger voltage versus junction temperature

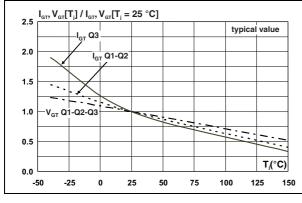


Figure 7. Surge peak on-state current vs number of cycles

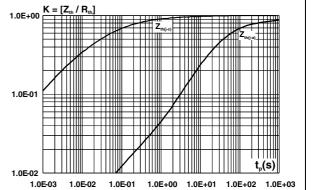
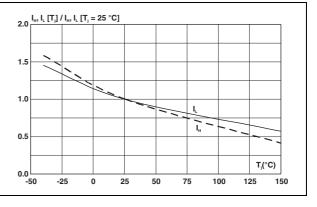
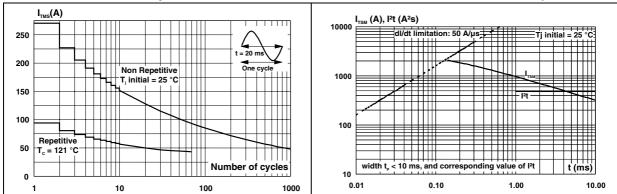
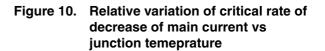
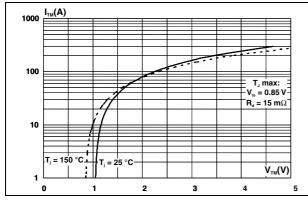
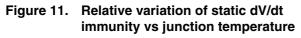


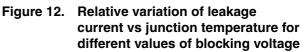
Figure 6. Relative variation of holding current and latching current vs junction temperature (typical value)


Figure 8. Non repetitive surge peak on-state current for a sinusoidal pulse


T_j(°C)


Figure 9. On state characteristics (maximum values)



(dl/dt)_c[T_i]/(dl/dt)_c[T_i = 150 °C]

0 ∟

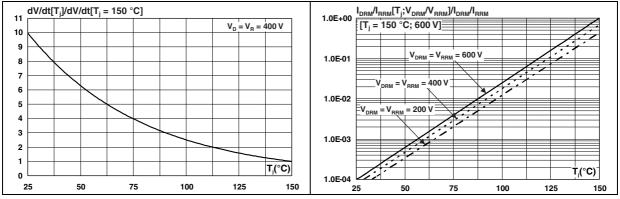
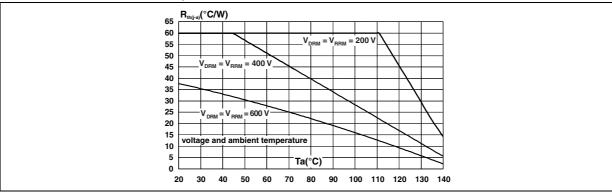



Figure 13. Acceptable junction to ambient thermal resistance vs repetitive peak off-state voltage and ambient temperature

2 Package information

- Epoxy meets UL94, V0
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 6.TO-220AB (NIns. and Ins. 20-up) dimensions

					Dimer	nsions		
		Ref.	M	illimete	rs		Inches	
			Min.	Тур.	Max.	Min.	Тур.	Max.
		А	15.20		15.90	0.598		0.625
		a1		3.75			0.147	
	b2	a2	13.00		14.00	0.511		0.551
		В	10.00		10.40	0.393		0.409
	F	b1	0.61		0.88	0.024		0.034
		b2	1.23		1.32	0.048		0.051
14 1 <u>3</u> · · · · · ·		С	4.40		4.60	0.173		0.181
	c2	c1	0.49		0.70	0.019		0.027
		c2	2.40		2.72	0.094		0.107
a2		е	2.40		2.70	0.094		0.106
	M	F	6.20		6.60	0.244		0.259
 e ^{→⊢∢} b1	l⊶ c1	ØI	3.75		3.85	0.147		0.151
		14	15.80	16.40	16.80	0.622	0.646	0.661
		L	2.65		2.95	0.104		0.116
		12	1.14		1.70	0.044		0.066
		13	1.14		1.70	0.044		0.066
		М		2.60			0.102	

3 Ordering information scheme

Figure 14.	Ordering	information	scheme
riguie 14.	ordening	mormation	Scheme

<u>Triac series</u> Current	 T 30 3	5 H -	6 T	
in Arms				
Sensitivity				
35 : 35 mA 50 : 50 mA				
High Temperature				
Voltage				
6 : 600 V				
Package				
T = TO-220AB I = TO-220AB ins				

4 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T3035H-6T	T3035H 6T	TO-220AB			
T3050H-6T	T3050H 6T	10-220AB	2.3 g	50	Tube
T3035H-6I	T3035H 6I	TO-220AB	2.5 y	50	Tube
T3050H-6I	T3050H 6I	Insulated			

5 Revision history

Table 8.Document revision history

Date	Revision	Changes
28-Jan-2010	1	Initial release.
17-May-2010	2	Updated maximum T _j in <i>Table 2</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17029 Rev 2