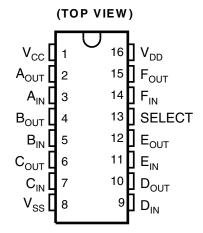


CMOS HEX VOLTAGE-LEVEL SHIFTER FOR TTL-TO-CMOS or CMOS-TO-CMOS OPERATION


FEATURES

www.ti.com

- Independence of Power-Supply Sequence Considerations – V_{CC} Can Exceed V_{DD}; Input Signals Can Exceed Both V_{CC} and V_{DD}
- Up and Down Level-Shifting Capability
- Shiftable Input Threshold for Either CMOS or TTL Compatibility
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current of 1 μA at 18 V Over Full Package-Temperature Range: 100 nA at 18 V and 25°C
- 5 V, 10 V, and 15 V Parametric Ratings
- Meets All Requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Military (-55°C/125°C) Temperature Range⁽¹⁾
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability

⁽¹⁾ Additional temperature ranges are available – contact factory

DESCRIPTION

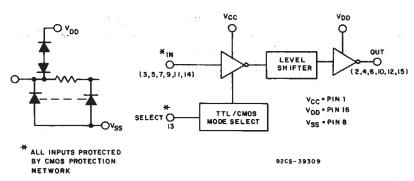
CD4504B hex voltage level-shifter consists of six circuits which shift input signals from the V_{CC} logic level to the V_{DD} logic level. To shift TTL signals to CMOS logic levels, the SELECT input is at the V_{CC} HIGH logic state. When the SELECT input is at a LOW logic state, each circuit translates signals from one CMOS level to another.

ORDERING INFORMATION⁽¹⁾

T _A	PAC	KAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	TSSOP – PW	Reel of 2000	CD4504BMPWREP	4504BEP

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TEXAS INSTRUMENTS

www.ti.com

SCHS369-NOVEMBER 2008

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{DD}	DC supply-voltage range, voltages referenced to V_{SS}	-0.5	+20	V	
	Input voltage range, all inputs		-0.5	$V_{CC} + 0.5$	V
	DC input current, any one input			±10	mA
		$T_A = -55^{\circ}C \text{ to } +100^{\circ}C$		500	mW
PD	Power dissipation per package	$T_A = +100^{\circ}C \text{ to } +125^{\circ}C$	Derate Line	early at 12 m 200 nW	W/°C to
	Device dissipation per output transistor, for TA = full package-temperature range (all package	e types)		100	mW
T _A	Operating temperature range		-55	+125	°C
θ_{JA}	Package thermal impedance ⁽¹⁾		91.1	°C/W	
T _{stg}	Storage temperature range	-85	+150	°C	
	Lead temperature (during soldering), at distance 1/1 10 s max		+265	°C	

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

www.ti.com

STATIC ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

			COND	TIONS		LIMITS AT INDICATED TEMPERATURES (°C)							
CHARAC	CTERISTIC	Vo	V _{IN}	Vcc	Vcc	-55	40	+85	+125		+25		UNIT
			(V)	(V)	(V)	-00	5 –40	+00	+125	MIN	TYP	MAX	
			0, 5	5	5	1.5	1.5	1.5	1.5		0.02	1.5	~ ^
Quiescent device c	urrent,		0, 10	5	10	2	2	2	2		0.02	2	mA
I_{DD} max and I_{CC} in	CMOS-CMOS mode		0, 15	5	15	4	4	120	120		0.02	4	۸
			0, 20	5	20	20	20	600	600		0.04	20	μA
			0, 5	5	5	5	5	6	6		2.5	5	
Quiescent device c I _{CC} max TTL-CMO	/		0, 10	5	10	5	5	6	6		2.5	5	mA
			0, 15	5	15	5	5	6	6		2.5	5	
		0.4	0, 5		5	0.64	0.61	0.42	0.36	0.51	1		
Output low (sink) c I _{OL} min	urrent,	0.5	0, 10		10	1.6	1.5	1.1	0.9	1.3	2.6		
		1.5	0, 15		15	4.2	4	2.8	2.4	3.4	6.8		
		4.6	0, 5		5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA
Output high (source	e) current,	2.5	0, 5		5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		1
I _{OH} min		9.5	0, 10		10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6		-
		13.5	0, 15		15	-4.2	-4	-2.8	-2.4	-3.4	-6.8		
			0, 5		5	0.05				0	0.05		
Output voltage: low-level, V _{OL} max			0, 10		10		0.	05			0	0.05	
			0, 15		15		0.	05			0	0.05	
			0, 5		5		4.	95		4.95	5		
Output voltage: high-level, V _{OH} min			0, 10		10		9.	95		9.95	10		
riigirievei, v _{OH} min			0, 15		15		14	.95		14.95	15		
	TTL-CMOS	1		5	10		0	.8				0.8	
	TTL-CMOS	1		5	15		0	.8				0.8	V
Input low voltage, V _{IL} max ⁽¹⁾	CMOS-CMOS	1		5	10		1	.5				1.5	V
	CMOS-CMOS	1.5		5	15		1	.5				1.5	
	CMOS-CMOS	1.5		10	15		;	3				3	
Input high voltage, V _{IH} min ⁽¹⁾	TTL-CMOS	9		5	10			2		2			
	TTL-CMOS	13.5		5	15			2		2			
	CMOS-CMOS	9		5	10		3	.5		3.5			
	CMOS-CMOS	13.5		5	15		3	.5		3.5			
	CMOS-CMOS	13.5		10	15			7		7			
Input current, I _{IN} m	ax		0, 18		18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	μA

(1) Applies to the six input signals. For mode control (P13), only the CMOS-CMOS ratings apply.

SCHS369-NOVEMBER 2008

www.ti.com

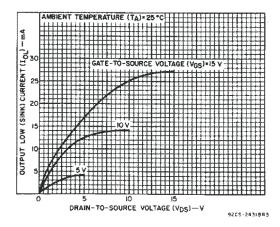


Figure 1. Typical Output Low (sink) Current Characteristics

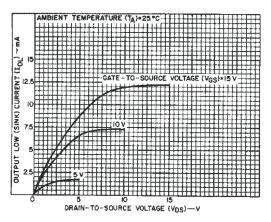


Figure 2. Minimum Output Low (sink) Current Characteristics

Figure 3. Typical Output High (source) Current Characteristics

www.ti.com

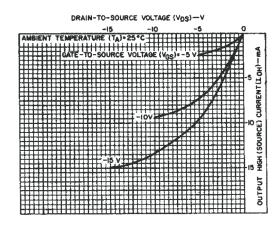
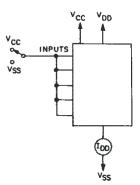


Figure 4. Minimum Output High (source) Current Characteristics

RECOMMENDED OPERATING CONDITIONS


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	MIN	MAX	UNIT
V_{DD} Supply-voltage range (for T_A = full package temperature range)	5	18	V

DYNAMIC ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200 \Omega$

CHARACTERISTIC			V _{cc}	V _{DD}	LIMI	TS	UNIT
		SHIFTING MODE	(V)	(V)	TYP	MAX	UNIT
		TTL to CMOS	5	10	140	280	
		$V_{DD} > V_{CC}$	5	15	140	280	
			5	10	120	240	
	Dressertion delays bisk to law	CMOS to CMOS $V_{DD} > V_{CC}$	5	15	120	240	
t _{PHL}	Propagation delay: high-to-low,		10	15	70	140	ns
			10	5	275	550	
	CMOS to CMOS V _{CC} > V _{DD}	15	5	275	550		
		VCC > VDD	15	10	70	140	
	-	TTL to CMOS	5	10	140	280	
		$V_{DD} > V_{CC}$	5	15	140	280	ns
			5	10	120	240	
		CMOS to CMOS $V_{DD} > V_{CC}$	5	15	120	240	
t _{PLH}	Propagation delay: low-to-high		10	15	70	140	
			10	5	200	400	
		CMOS to CMOS V _{CC} > V _{DD}	15	5	200	400	
			15	10	60	120	
				5	100	200	
t _{THL} , t _{TLH}	Transition time	All modes		10	50	100	ns
				15	40	80	
C _{IN}	Input capacitance	Any input			5	7.5	pF

Figure 5. Quiescent Device Current

Texas

INSTRUMENTS

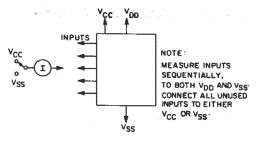



Figure 6. Input Current

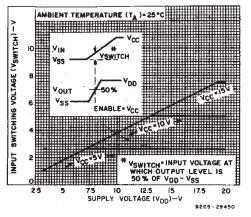


Figure 8. Typical Input Switching as a Function of High-Level Supply Voltage (SELECT at V_{CC} – CMOS Mode

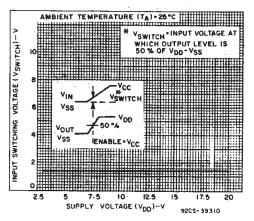


Figure 9. Typical Input Switching as a Function of High-Level Supply Voltage (SELECT at $V_{\rm SS}$ – TTL Mode)

www.ti.com

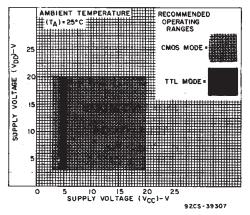
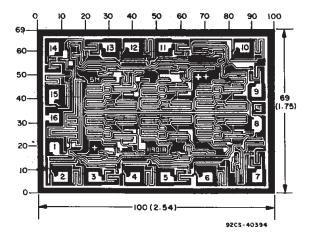



Figure 10. High-Level Supply Voltage vs. Low-Level Supply Voltage

A. Dimensions in parentheses are in millimeters and are derived form the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

Figure 11. Dimensions and Pad Layout

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4504BMPWREP	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
V62/09606-01XE	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

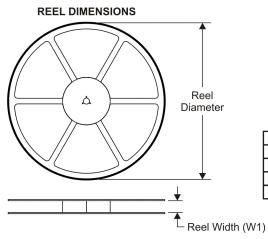
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

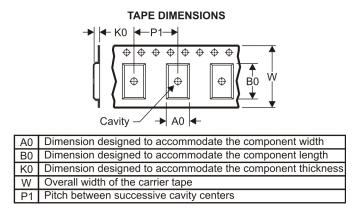
OTHER QUALIFIED VERSIONS OF CD4504B-EP :

Catalog: CD4504B

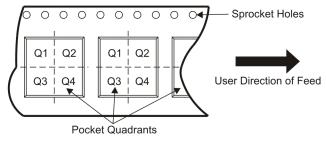
• Military: CD4504B-MIL

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

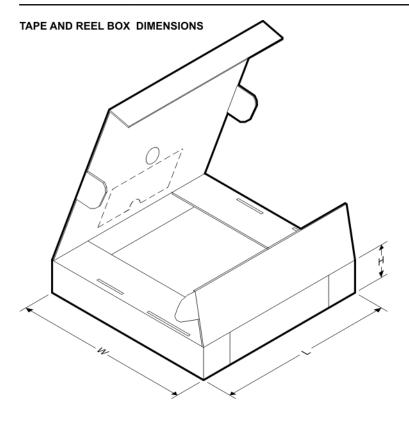

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4504BMPWREP	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

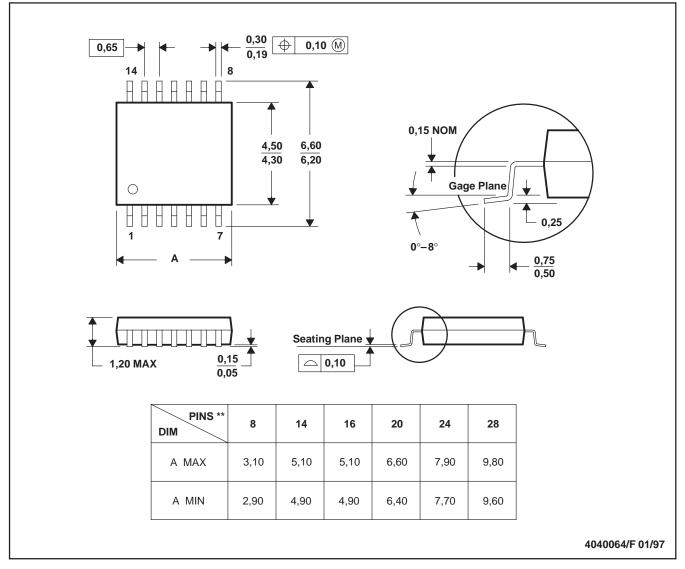
www.ti.com

PACKAGE MATERIALS INFORMATION

30-Jul-2010

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4504BMPWREP	TSSOP	PW	16	2000	346.0	346.0	29.0

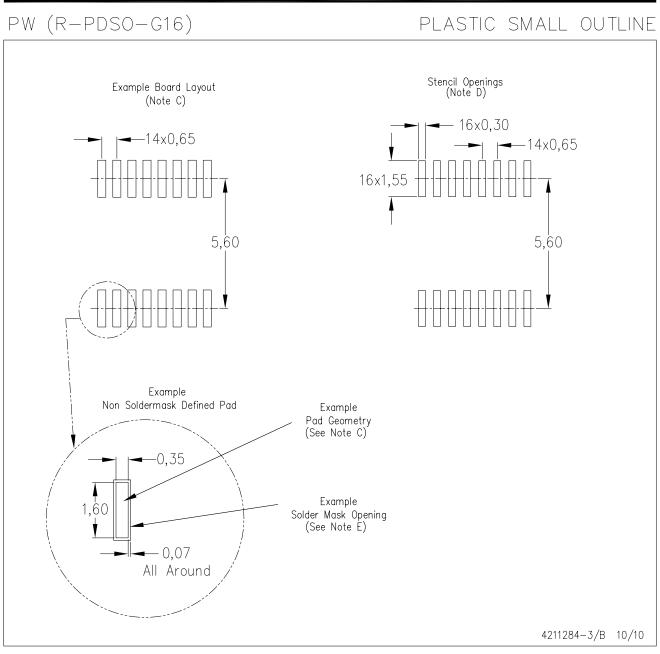

MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated