PD - 95629

 I_{D}

17A

International

IRFB17N60KPbF

R_{DS(on)} typ.

0.35Ω

SMPS MOSFET

V_{DSS}

600V

HEXFET[®] Power MOSFET

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits
- Lead-Free

Benefits

- Smaller TO-220 Package
- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current

(150)
TO-220AB

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	11	A
IDM	Pulsed Drain Current ①	68	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	340	W
	Linear Derating Factor	2.7	W/ºC
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	11	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	•C
	(1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10	N

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		330	mJ
I _{AR}	Avalanche Current@		17	A
E _{AR}	Repetitive Avalanche Energy®		34	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case		0.37	
Recs	Case-to-Sink, Flat, Greased Surface	0.50		•C/W
Roja	Junction-to-Ambient		58	

www.vishay.com 1

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V(BR)DSS	Drain-to-Source Breakdown Voltage	600			V	$V_{GS} = 0V, I_D = 250 \mu A$
$\Delta V_{(BRiDSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.60		V/°C	Reference to 25° C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.35	0.42	Ω	V_{GS} = 10V, I_D = 10A \oplus
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	٧	$V_{DS} = V_{GS}, I_D = 250 \mu A$
	Drain to Source Lockogo Current			50	μA	$V_{\rm DS} = 600V, V_{\rm GS} = 0V$
IDSS	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 480V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			100		V _{GS} = 30V
GSS	Gate-to-Source Reverse Leakage			-100	- nA	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
g fs	Forward Transconductance	5.9			S	$V_{DS} = 50V, I_D = 10A$
Qg	Total Gate Charge			99		I _D = 17A
Q _{gs}	Gate-to-Source Charge			32	nC	V _{DS} = 480V
Qgd	Gate-to-Drain ("Miller") Charge			47		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		25			V _{DD} = 300V
t _r	Rise Time		82		ns	I _D = 17A
t _{d(off)}	Turn-Off Delay Time		38			R _G = 7.5Ω
tí	Fall Time		32		1	V_{GS} = 10V,See Fig. 10 ④
Ciss	Input Capacitance		2700			$V_{GS} = 0V$
Coss	Output Capacitance		240			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		21		рF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		2950		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		67			$V_{GS} = 0V, V_{DS} = 480V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		120			V_{GS} = 0V, V_{DS} = 0V to 480V \circledast

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current			17		MOSFET symbol	
	(Body Diode)				A	showing the	
Ism	Pulsed Source Current			68			integral reverse 🔍 🛄
	(Body Diode) ①						p-n junction diode.
V _{SD}	Diode Forward Voltage			1.5	V	$T_{\rm J}=25^{\circ}C,\ I_{\rm S}=17A,\ V_{\rm GS}=0V \textcircled{\oplus}$	
t _{rr}	Reverse Recovery Time		520	780	ns	T _J = 25°C, I _F = 17A	
Q _{rr}	Reverse RecoveryCharge		5620	8430	nC	di/dt = 100A/µs ⊘	
t _{rr}	Reverse Recovery Time		580	870	ns	T _J = 125°C, I _F = 17A	
Q _{rr}	Reverse RecoveryCharge		6470	9700	nC	di/dt = 100A/µs	
t _{on}	Forward Tum-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- 0 Starting $T_{\rm J}$ = 25°C, L = 2.3mH, $R_{\rm G}$ = 25 $\Omega,$ $I_{\rm AS}$ = 17A,

Document Number: 91099

www.vishay.com 2

International

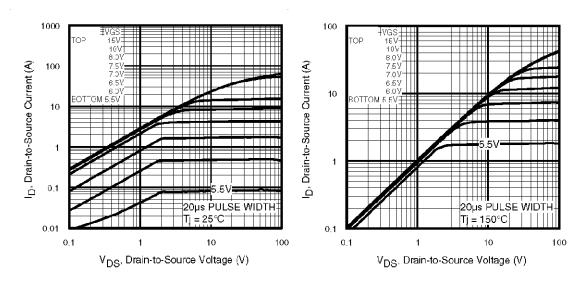


Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

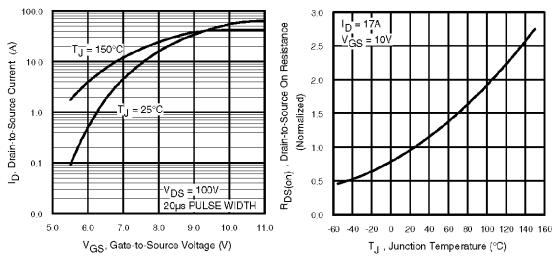


Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

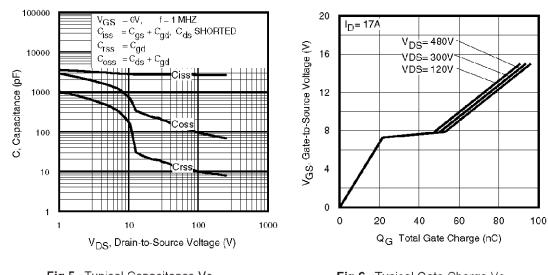


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

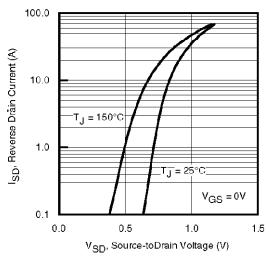


Fig 7. Typical Source-Drain Diode Forward Voltage

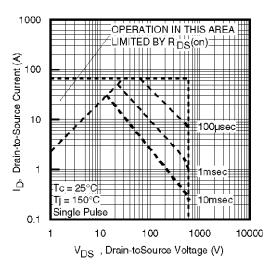
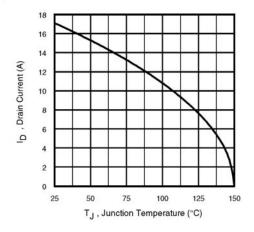



Fig 8. Maximum Safe Operating Area

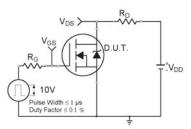


Fig 10a. Switching Time Test Circuit

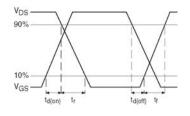


Fig 10b. Switching Time Waveforms

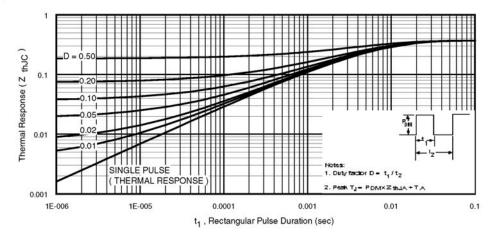
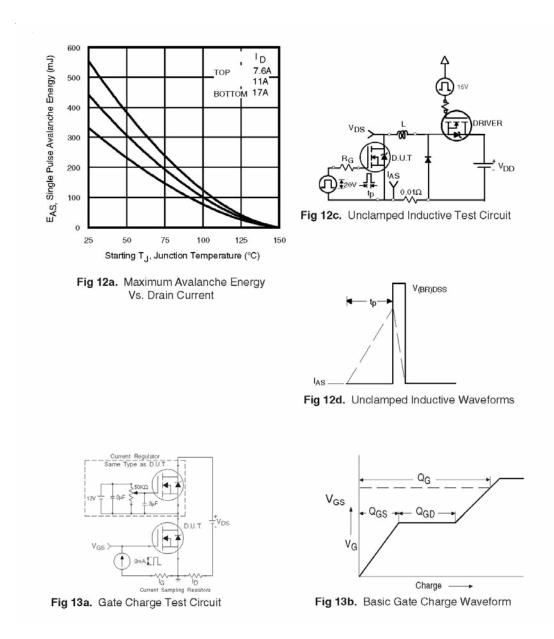
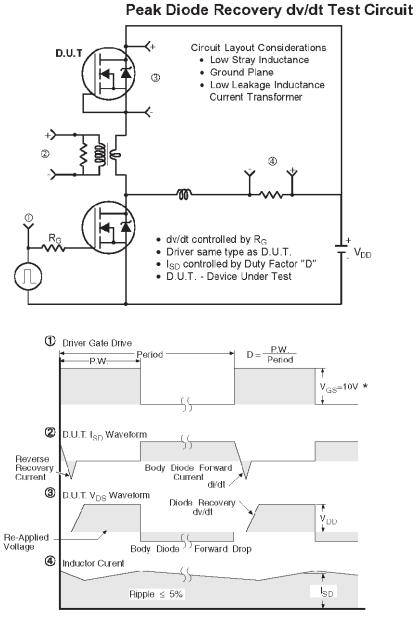
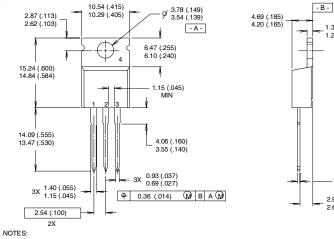




Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International


* V_{GS} = 5V for Logic Level Devices

International

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

1.32 (.052)

1.22 (.048)

HEXFET

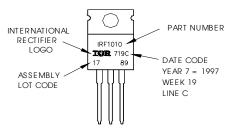
1- GATE

3X 0.55 (.022) 0.46 (.018)

2.92 (.115) 2.64 (.104)

2- DRAIN 3- SOURCE 4- DRAIN

LEAD ASSIGNMENTS


IGBTs, CoPACK

1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

TO-220AB package is not recommended for Surface Mount Application

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 08/04

> www.vishay.com 8

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.