

Mark: 2J

PNP Switching Transistor

This device is designed for very high speed saturated switching at collector currents to 100 mA. Sourced from Process 65. See PN4258 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	12	V
V _{CBO}	Collector-Base Voltage	12	V
V _{EBO}	Emitter-Base Voltage	4.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

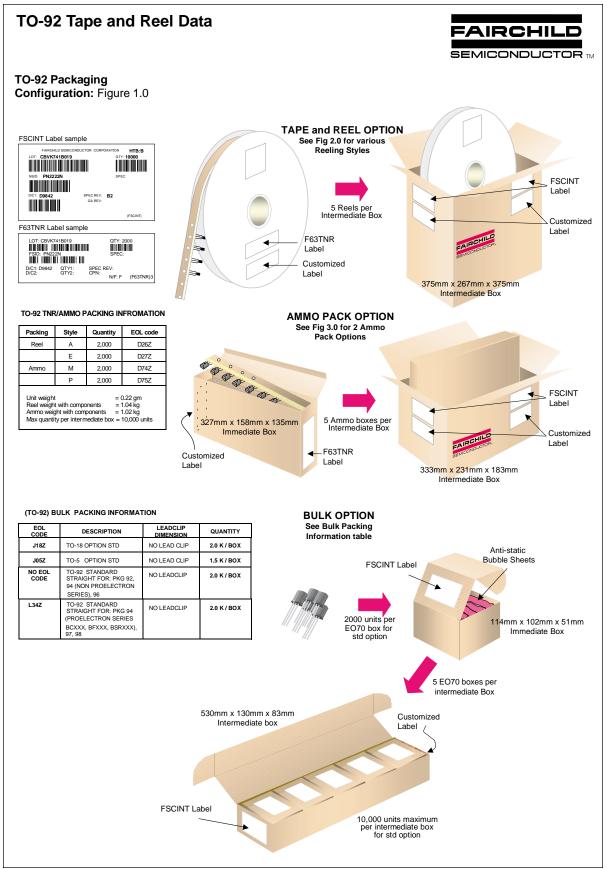
 1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. 3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах		Units
		PN3640	*MMBT3640	
P _D	Total Device Dissipation	350	225	mW
	Derate above 25°C	2.8	1.8	mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

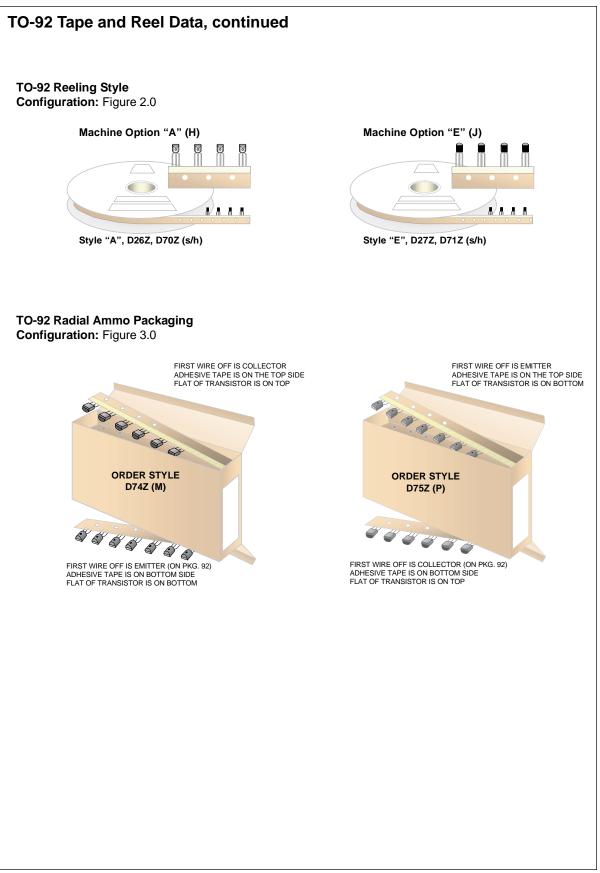
*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

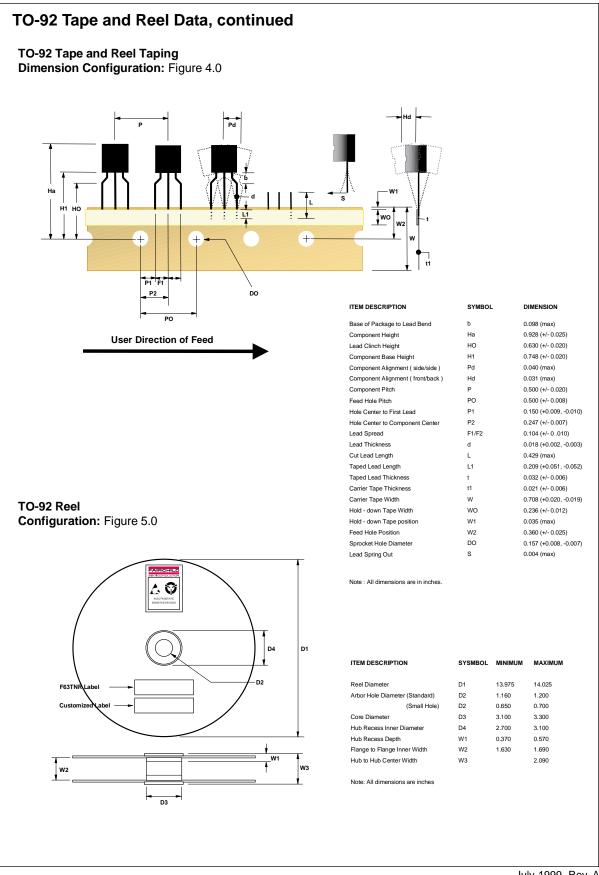
PN3640 / MMBT3640

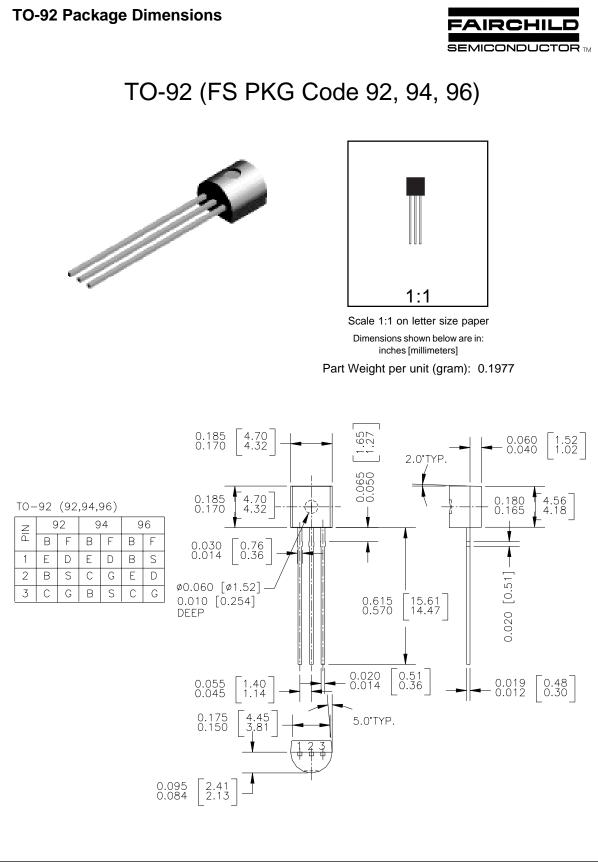

PNP Switching Transistor

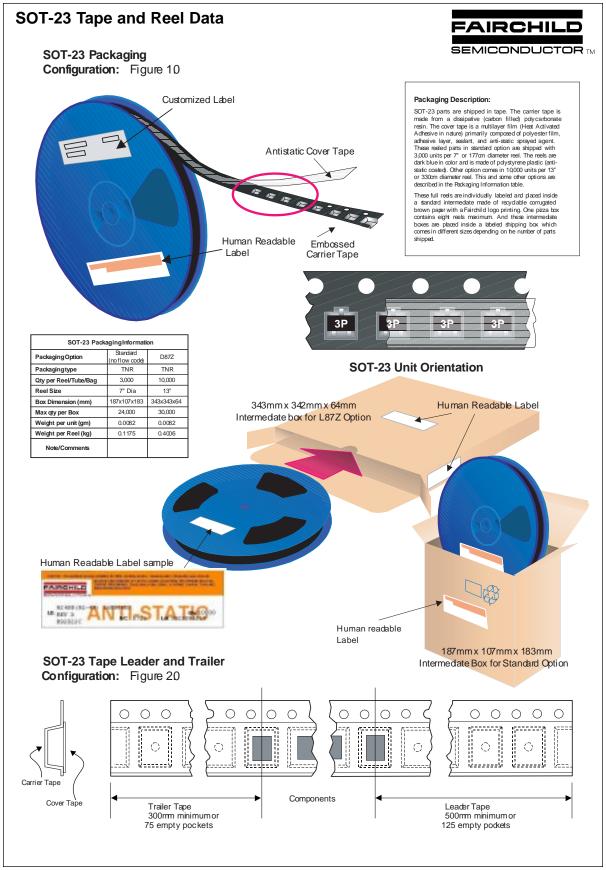
Symbol	Parameter	Test Conditions	Min	Max	Units
	RACTERISTICS				
/ _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	12		V
/ _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{C} = 100 \ \mu A, \ V_{BE} = 0$	12		V
(BR)CBO	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	12		V
/ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 100 \ \mu A, I_{C} = 0$	4.0		V
CES	Collector Cutoff Current	$V_{CE} = 6.0 \text{ V}, V_{BE} = 0$		0.01 1.0	μΑ
В	Base Current	$V_{CE} = 6.0 \text{ V}, V_{BE} = 0, T_A = 65^{\circ}\text{C}$ $V_{CE} = 6.0 \text{ V}, V_{BE} = 0$		1.0	μA nA
,					
)N CHAR	RACTERISTICS*				
	DC Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 0.3 \text{ V}$	30	120	
FE		$I_{\rm C} = 50$ mA, $V_{\rm CE} = 0.0$ V	20	120	
/ _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 0.5$ mA		0.3	V
		$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$		0.2 0.6	V V
		$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}, T_{A} = 65^{\circ}\text{C}$		0.25	v
BE(sat)	Base-Emitter Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 0.5$ mA	0.75	0.95	V
	Base-Emitter Saturation Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$	0.75 0.8	0.95 1.0 1.5	V V V
/ _{BE(sat)} SMALL SI		$I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$		1.0	V
SMALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$	0.8	1.0	V V
SMALL SI T Cobo	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5	MHz pF
SMALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5	V V MHz
SMALL SI T Cobo	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5	MHz pF
MALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5	MHz pF
MALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5	MHz pF
MALL SI Cobo Cibo	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5 3.5	MHz pF pF
SMALL SI Cobo Cibo SWITCHIN	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time	$\begin{array}{l} I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array}$	0.8	1.0 1.5 3.5 3.5 10	MHz pF pF
SMALL SI Pobo Dibo SWITCHIN	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5 3.5 10 30	MHz pF pF ns ns
SMALL SI r Pobo Pibo SWITCHIN d r s f	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{split}$	0.8	1.0 1.5 3.5 3.5 10 30 20	MHz pF pF ns ns ns
SMALL SI Pobo Sibo SWITCHIN	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \end{split}$	0.8	1.0 1.5 3.5 3.5 10 30 20 12	MHz pF pF ns ns ns ns
SMALL SI Pobo Sibo SWITCHIN	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time	$\begin{array}{l} I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array}$	0.8	1.0 1.5 3.5 3.5 10 30 20 12	MHz pF pF ns ns ns ns
SMALL SI Pobo Sibo SWITCHIN	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time Turn-On Time	$\begin{array}{c} I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array}$	0.8	1.0 1.5 3.5 3.5 10 30 20 12 25	MHz pF pF ns ns ns ns ns
SMALL SI Pobo Dibo Dibo SWITCHIN S S S S S S S S S S S S S S S S S S S	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time	$\begin{array}{l} I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array}$	0.8	1.0 1.5 3.5 3.5 10 30 20 12 25	MHz pF pF ns ns ns ns ns
SMALL SI r Cobo	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time Turn-On Time	$\begin{array}{l} I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ V}, \\ f = 100 \text{ MHz} \\ \hline \\ V_{CB} = 5.0 \text{ V}, I_{E} = 0, \\ f = 1.0 \text{ MHz} \\ \hline \\ V_{BE} = 0.5 \text{ V}, I_{C} = 0, \\ f = 1.0 \text{ MHz} \\ \hline \\ V_{CC} = 6.0 \text{ V}, V_{BE(off)} = 1.9 \text{ V}, \\ I_{C} = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA} \\ \hline \\ V_{CC} = 6.0 \text{ V}, I_{C} = 50 \text{ mA}, \\ I_{B1} = I_{B2} = 5.0 \text{ mA} \\ \hline \\ V_{CC} = 6.0 \text{ V}, V_{BE(off)} = 1.9 \text{ V}, \\ I_{C} = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA} \\ \hline \\ V_{CC} = 1.5 \text{ V}, I_{C} = 10 \text{ mA}, \\ I_{B1} = I_{B2} = 0.5 \text{ mA} \\ \hline \\ V_{CC} = 6.0 \text{ V}, V_{BE(off)} = 1.9 \text{ V}, \\ I_{C} = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA} \\ \hline \end{array}$	0.8	1.0 1.5 3.5 3.5 10 30 20 12 25 60	MHz pF pF ns ns ns ns ns
SMALL SI T Cobo	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance NG CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time Turn-On Time	$\begin{array}{l} I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array}$	0.8	1.0 1.5 3.5 3.5 10 30 20 12 25 60	MHz pF pF ns ns ns ns ns

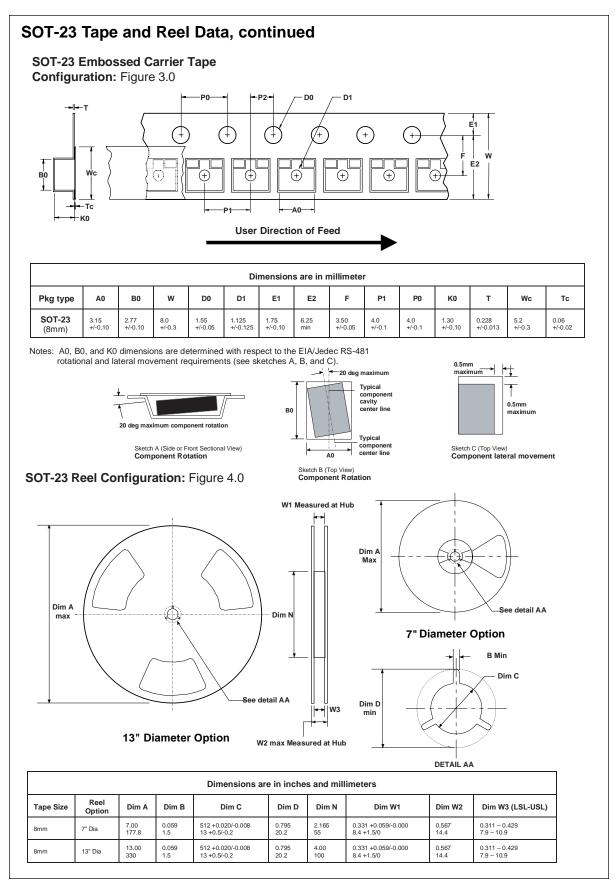
_

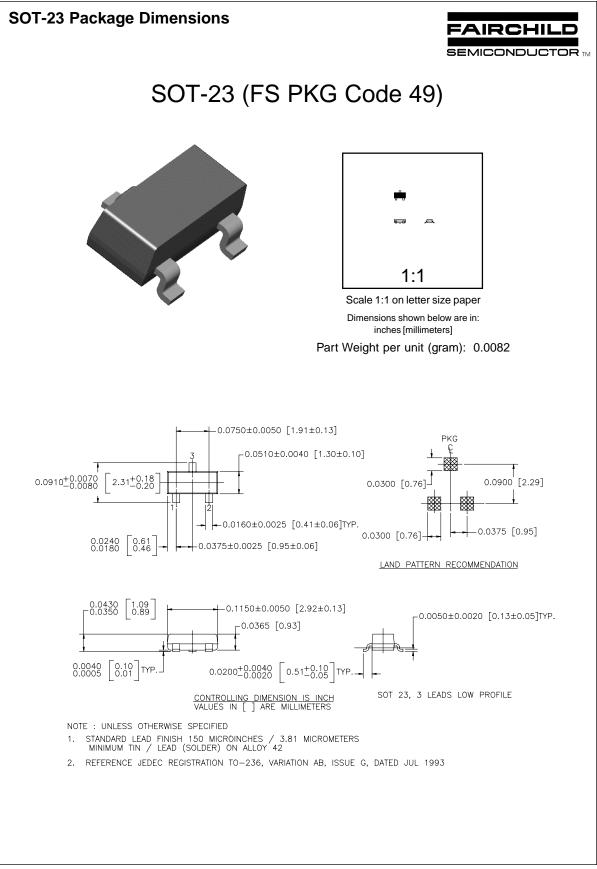

-


PN3640 / MMBT3640


©2001 Fairchild Semiconductor Corporation


March 2001, Rev. B1


July 1999, Rev. A



©2000 Fairchild Semiconductor International

September 1999, Rev. C

September 1999, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ POP™

PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	1	Rev G