

## **FEATURES**

- Transceiver for Memory Card Interface [MultiMediaCard (MMC) and Secure Digital (SD) Compliant Products]
- Configurable I/O Switching Levels With Dual-Supply Pins Operating Over Full 1.2-V to 3.6-V Power-Supply Range
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

### ESD Protection

- ±8-kV Contact Discharge
- ±15-kV Air-Gap Discharge
- EMI Filtering
- Integrated Pullup and Pulldown Resistors on Card-Side I/Os per SD Specification
- ZQS Package Has 100-k $\Omega$  Pullup Resistors Via WP and CD Pins

### **DESCRIPTION/ORDERING INFORMATION**

The SN74AVCA406E is a transceiver for interfacing microprocessors with MultiMediaCards (MMCs) and secure digital (SD) cards.

Two supply-voltage pins allow the A-port and B-port input switching thresholds to be configured separately. The A port is designed to track  $V_{CCA}$ , while the B port is designed to track  $V_{CCB}$ .  $V_{CCA}$  and  $V_{CCB}$  can accept any supply voltage from 1.2 V to 3.6 V.

If either  $V_{CC}$  is switched off ( $V_{CCA} = 0$  V and/or  $V_{CCB} = 0$  V), all outputs are placed in the high-impedance state to conserve power.

The SN74AVCA406E enables system designers to easily interface low-voltage microprocessors to different memory cards operating at higher voltages.

Memory card standards recommend high ESD protection for devices that connect directly to the external memory card. To meet this need, the SN74AVCA406E incorporates  $\pm$ 15-kV Air-Gap Discharge and  $\pm$ 8-kV Contact Discharge protection on the card side.

The SN74AVCA406E is available in two 0.5-mm-pitch ball grid array (BGA) packages. The 20-ball package has dimensions of 3 mm  $\times$  2.5 mm, and the 24-ball package measures 3 mm  $\times$  3 mm. Memory cards are widely used in mobile phones, PDAs, digital cameras, personal media players, camcorders, set-top boxes, etc. Low static power consumption and small package size make the SN74AVCA406E an ideal choice for these applications.

#### ORDERING INFORMATION

| T <sub>A</sub> | PACKAGE <sup>(1)(2)</sup>                |              | ORDERABLE PART NUMBER | TOP-SIDE MARKING |  |
|----------------|------------------------------------------|--------------|-----------------------|------------------|--|
|                | UFBGA – ZXY (Pb-Free)                    | Reel of 2500 | SN74AVCA406EZXYR      | WM406E           |  |
| –40°C to 85°C  | MicroStar Junior™ BGA – ZQS<br>(Pb-Free) | Reel of 2500 | SN74AVCA406EZQSR      | WM406E           |  |

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

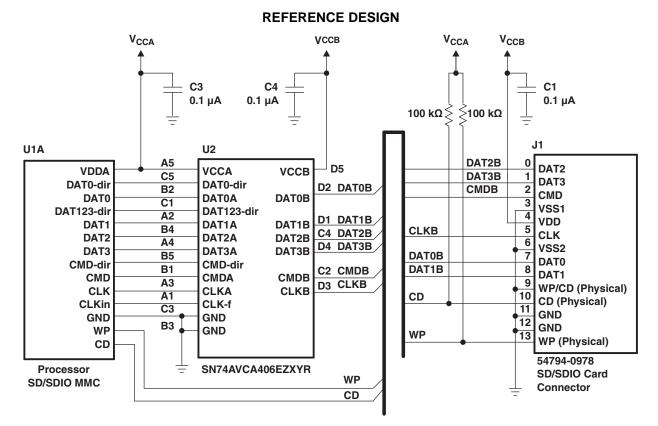


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MicroStar Junior is a trademark of Texas Instruments.

### SN74AVCA406E MMC AND SD CARD VOLTAGE-TRANSLATION TRANSCEIVER SCES659C-OCTOBER 2007-REVISED MARCH 2008




**ZXY PACKAGE** (TOP VIEW) ABCD 0000 5 4 3 2 0000 1 **ZQS PACKAGE** (TOP VIEW) 2 3 4 5 1 000000Α  $\bigcirc \bigcirc \bigcirc \bigcirc$ в  $\bigcirc$ 00000 С 00000 D 00000 Е

#### TERMINAL ASSIGNMENTS (20-Ball ZXY Package)

|   | Α                | В       | С          | D                |
|---|------------------|---------|------------|------------------|
| 5 | V <sub>CCA</sub> | CMD-dir | DAT0-dir   | V <sub>CCB</sub> |
| 4 | DAT3A            | DAT2A   | DAT2B      | DAT3B            |
| 3 | CLKA             | GND     | GND        | CLKB             |
| 2 | DAT1A            | DAT0A   | CMDB       | DAT0B            |
| 1 | CLK-f            | CMDA    | DAT123-dir | DAT1B            |

#### TERMINAL ASSIGNMENTS (24-Ball ZQS Package)

|   | 1     | 2       | 3                | 4                | 5     |
|---|-------|---------|------------------|------------------|-------|
| Α | DAT2A | CMD-dir | DAT0-dir         | RSV              | DAT2B |
| В | DAT3A |         | V <sub>CCA</sub> | V <sub>CCB</sub> | DAT3B |
| С | CLKA  | RSV     | GND              | GND              | CLKB  |
| D | DAT0A | CMDA    | CD               | CMDB             | DAT0B |
| Е | DAT1A | CLK-f   | DAT123-dir       | WP               | DAT1B |



#### Figure 1. Interfacing With SD/SDIO Card

## SN74AVCA406E MMC AND SD CARD VOLTAGE-TRANSLATION TRANSCEIVER

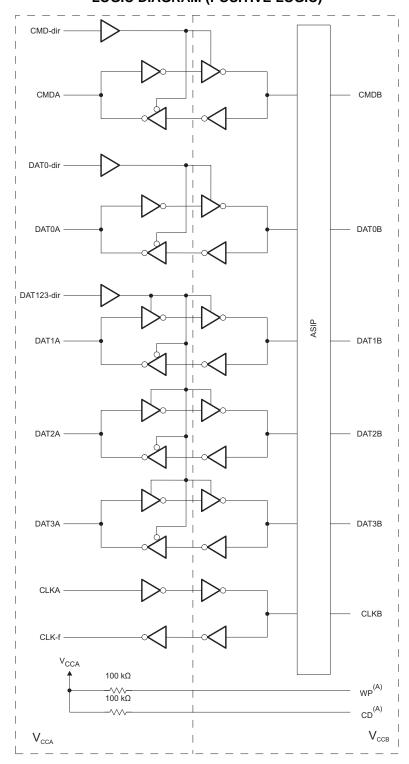
SCES659C-OCTOBER 2007-REVISED MARCH 2008

#### **PIN DESCRIPTION**

| ZQS<br>BALL NO. | ZXY<br>BALL NO. | NAME             | FUNCTION                                                                                                                      | TYPE   |
|-----------------|-----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|
| A1              | B4              | DAT2A            | Data bit 3 connected to host. Referenced to V <sub>CCA</sub> .                                                                | I/O    |
| A2              | B5              | CMD-dir          | Direction control for command bit (CMDA/CMDB)                                                                                 | Input  |
| A3              | C5              | DAT0-dir         | Direction control for DAT0A/DAT0B                                                                                             | Input  |
| A4, C2          | -               | RSV              | Reserved (for possible future functionality). Leave unconnected.                                                              |        |
| A5              | C5              | DAT2B            | Data bit 3 connected to memory card. Includes a 70-k $\Omega$ pullup resistor to $V_{CCB}.$                                   | I/O    |
| B1              | A4              | DAT3A            | Data bit 4 connected to host. Referenced to V <sub>CCA</sub> .                                                                | I/O    |
| B2              | -               | -                | Depopulated ball                                                                                                              |        |
| B3              | A5              | V <sub>CCA</sub> | A-port supply voltage. V <sub>CCA</sub> powers all A-port I/Os and control inputs.                                            | Power  |
| B4              | D5              | V <sub>CCB</sub> | B-port supply voltage. V <sub>CCB</sub> powers all B-port I/Os.                                                               | Power  |
| B5              | D4              | DAT3B            | Data bit 4 connected to memory card. Includes a 470-k $\Omega$ pulldown resistor to $V_{CCB}.$                                | I/O    |
| C1              | A3              | CLKA             | Clock signal connected to host. Referenced to V <sub>CCA</sub> .                                                              | Input  |
| C3              | B3              | GND              | Ground                                                                                                                        |        |
| C4              | C3              | GND              | Ground                                                                                                                        |        |
| C5              | D3              | CLKB             | Clock signal connected to memory card. Referenced to V <sub>CCB</sub> .                                                       | Output |
| D1              | B2              | DAT0A            | Data bit 1 connected to host. Referenced to V <sub>CCA</sub> .                                                                | I/O    |
| D2              | B1              | CMDA             | Command bit connected to host. Referenced to V <sub>CCA</sub> .                                                               | I/O    |
| D3              | _               | CD               | Connected to card detect on the mechanical connector. CD has an internal 100-k $\Omega$ pullup resistor to V <sub>CCA</sub> . | Output |
| D4              | C2              | CMDB             | Command bit connected to memory card. Includes a 15-k $\Omega$ pullup resistor to V <sub>CCB</sub> .                          | I/O    |
| D5              | D2              | DAT0B            | Data bit 1 connected to memory card. Includes a 70-k $\Omega$ pullup resistor to V <sub>CCB</sub> .                           | I/O    |
| E1              | A2              | DAT1A            | Data bit 2 connected to host. Referenced to V <sub>CCA</sub> .                                                                | I/O    |
| E2              | A1              | CLK-f            | Clock feedback to host for resynchronizing data. Used in OMAP processors. Leave unconnected if not used.                      | Output |
| E3              | C1              | DAT123-dir       | Direction control for DAT1A/B, DAT2A/B, and DAT3A/B                                                                           | Input  |
| E4              | -               | WP               | Connected to write protect on the mechanical connector. WP has an internal 100-k $\Omega$ pullup resistor to $V_{CCA}$        | Output |
| E5              | D1              | DAT1B            | Data bit 2 connected to memory card. Includes a 70-k $\Omega$ pullup resistor to V <sub>CCB</sub> .                           | I/O    |



#### **FUNCTION TABLES**


| CONTROL INPUT | OUTPUT  | CIRCUITS | OPERATION    |
|---------------|---------|----------|--------------|
| CMD-dir       | CMDA    | CMDB     | OFERATION    |
| High          | Hi-Z    | Enabled  | CMDA to CMDB |
| Low           | Enabled | Hi-Z     | CMDB to CMDA |

| CONTROL INPUT<br>DAT0-dir | OUTPUT  | CIRCUITS | FUNCTION       |
|---------------------------|---------|----------|----------------|
|                           | DAT0A   | DAT0B    | FUNCTION       |
| High                      | Hi-Z    | Enabled  | DAT0A to DAT0B |
| Low                       | Enabled | Hi-Z     | DAT0B to DAT0A |

|                             | OUTPUT                    | OUTPUT CIRCUITS           |                |  |
|-----------------------------|---------------------------|---------------------------|----------------|--|
| CONTROL INPUT<br>DAT123-dir | DAT1A,<br>DAT2A,<br>DAT3A | DAT1B,<br>DAT2B,<br>DAT3B | FUNCTION       |  |
|                             | Hi-Z                      |                           | DAT1A to DAT1B |  |
| High                        |                           | Enabled                   | DAT2A to DAT2B |  |
|                             |                           |                           | DAT3A to DAT3B |  |
|                             |                           |                           | DAT1B to DAT1A |  |
| Low                         | Enabled                   | Hi-Z                      | DAT2B to DAT2A |  |
|                             |                           |                           | DAT3B to DAT3A |  |

4

Copyright © 2007–2008, Texas Instruments Incorporated



#### LOGIC DIAGRAM (POSITIVE LOGIC)

A. WP and CD pullup resistors are for the ZQS package only.

### Figure 2. Logic Diagram

5

### SN74AVCA406E MMC AND SD CARD VOLTAGE-TRANSLATION TRANSCEIVER SCES659C-OCTOBER 2007-REVISED MARCH 2008



**BLOCK DIAGRAM** 

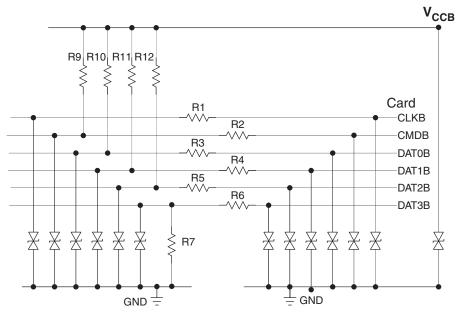
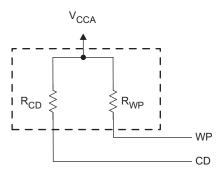




Figure 3. ASIP Block Diagram

| RESISTORS             |        | BIDIRECTIONAL ZENER DIODES |              |  |  |
|-----------------------|--------|----------------------------|--------------|--|--|
|                       | 40 Ω   | Vbr min.                   | 14 V at 1 mA |  |  |
| R1,R2, R3, R4, R5, R6 | 40 12  | Line capacitance           | <20 pF       |  |  |
| Tolerance             | ±20%   |                            |              |  |  |
| R10, R11, R12         | 70 kΩ  |                            |              |  |  |
| R9                    | 15 kΩ  |                            |              |  |  |
| R7                    | 470 kΩ |                            |              |  |  |
| Tolerance             | ±30%   |                            |              |  |  |



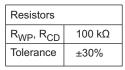



Figure 4. WP, CD Pullup Resistors (for ZQS Package Only)

6

Copyright © 2007–2008, Texas Instruments Incorporated



### **ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>**

over operating free-air temperature range (unless otherwise noted)

|                                      |                                                                                                                                                                                                       |                    | MIN  | MAX                    | UNIT |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------------------------|------|
| V <sub>CCA</sub><br>V <sub>CCB</sub> | Supply voltage range                                                                                                                                                                                  |                    | -0.5 | 4.6                    | V    |
|                                      |                                                                                                                                                                                                       | I/O ports (A port) | -0.5 | 4.6                    |      |
| VI                                   | Input voltage range <sup>(2)</sup>                                                                                                                                                                    | I/O ports (B port) | -0.5 | 4.6                    | V    |
|                                      |                                                                                                                                                                                                       | Control inputs     | -0.5 | 4.6                    |      |
| V                                    | <ul> <li>Voltage range applied to any output in the high-impedance or power-off state<sup>(2)</sup></li> <li>Voltage range applied to any output in the high or low state<sup>(2)(3)</sup></li> </ul> | A port             | -0.5 | 4.6                    | V    |
| ۷O                                   |                                                                                                                                                                                                       | B port             | -0.5 | 4.6                    | v    |
| V                                    |                                                                                                                                                                                                       | A port             | -0.5 | V <sub>CCA</sub> + 0.5 | V    |
| vo                                   | voltage range applied to any output in the high of low state                                                                                                                                          | B port             | -0.5 | V <sub>CCB</sub> + 0.5 | V    |
| I <sub>IK</sub>                      | Input clamp current                                                                                                                                                                                   | V <sub>1</sub> < 0 |      | -50                    | mA   |
| I <sub>OK</sub>                      | Output clamp current                                                                                                                                                                                  | V <sub>O</sub> < 0 |      | -50                    | mA   |
| lo                                   | Continuous output current                                                                                                                                                                             |                    |      | ±50                    | mA   |
|                                      | Continuous current through $V_{CCA}$ , $V_{CCB}$ , or GND                                                                                                                                             |                    |      | ±100                   | mA   |
| T <sub>stg</sub>                     | Storage temperature range                                                                                                                                                                             |                    | -65  | 150                    | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

### PACKAGE THERMAL IMPEDANCE

|                 |                                          |             |       | UNIT  |
|-----------------|------------------------------------------|-------------|-------|-------|
| 0               | Backage thermal impedance <sup>(1)</sup> | ZQS package | 171.6 | °C/W  |
| θ <sub>JA</sub> | Package thermal impedance <sup>(1)</sup> | ZXY package | 193   | C/ VV |

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

### SN74AVCA406E MMC AND SD CARD VOLTAGE-TRANSLATION TRANSCEIVER SCES659C-OCTOBER 2007-REVISED MARCH 2008



**RECOMMENDED OPERATING CONDITIONS**<sup>(1)(2)(3)</sup>

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>CCI</sub>                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>cco</sub> | MIN                     | MAX                     | UNIT |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|-------------------------|------|
| V <sub>CCA</sub> | Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.2                     | 3.6                     | V    |
| V <sub>CCB</sub> | Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.2                     | 3.6                     | V    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2 V to 1.95 V                                                                                                                                                                                                                                                                                                                                                                                    |                  | V <sub>CCI</sub> x 0.65 |                         |      |
| VIH              | Supply voltage       1.2 V to 1.95 V         B       Supply voltage       1.2 V to 1.95 V         High-level input voltage       All inputs <sup>(4)</sup> 1.95 V to 2.7 V         Low-level input voltage       All inputs <sup>(4)</sup> 1.2 V to 1.95 V         Low-level input voltage       All inputs <sup>(4)</sup> 1.2 V to 1.95 V         Input voltage       Control inputs       1.2 V to 1.95 V         Input voltage       Control inputs       1.95 V to 2.7 V         Input/output voltage       Control inputs       1.95 V to 2.7 V         Input/output voltage       Active state       2.7 V to 3.6 V         Input/output voltage       Active state       3-state         High-level output current (A port)       Low-level output current (A port)       Input/output current (A port)         High-level output current (B port)       High-level output current (B port)       Input/output current (B port) | All inputs <sup>(4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.95 V to 2.7 V                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.7                     |                         | V    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                         |                         |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2 V to 1.95 V                                                                                                                                                                                                                                                                                                                                                                                    |                  |                         | V <sub>CCI</sub> x 0.35 |      |
| V <sub>IL</sub>  | Low-level input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All inputs <sup>(4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.95 V to 2.7 V                                                                                                                                                                                                                                                                                                                                                                                    |                  |                         | 0.7                     | V    |
|                  | Input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                     |                  |                         | 0.8                     |      |
| VI               | Input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 0                       | 3.6                     | V    |
| .,               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Active state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 0                       | V <sub>CCO</sub>        |      |
| V <sub>I/O</sub> | Input/output voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 0                       | 3.6                     | V    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 V            |                         | -1                      |      |
| I <sub>OH</sub>  | High-level output current (A port)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4 V to 1.6 V   |                         | -1                      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.65 V to 1.95 V |                         | -2                      | mA   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3 V to 2.7 V   |                         | -4                      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 3 V to 3.6 V     |                         | -8                      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 V            |                         | 1                       |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4 V to 1.6 V   |                         | 1                       |      |
| I <sub>OL</sub>  | Low-level output current (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (A port)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.65 V to 1.95 V |                         | 2                       | mA   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3 V to 2.7 V   |                         | 4                       |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 3 V to 3.6 V     |                         | 8                       |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 V            |                         | -1                      |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4 V to 1.6 V   |                         | -2                      |      |
| I <sub>OH</sub>  | High-level output current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B port)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3 V to 2.7 V         3 V to 3.6 V         1.2 V         1.4 V to 1.6 V         2.3 V to 2.7 V         3 V to 3.6 V         2.3 V to 2.7 V         3 V to 3.6 V         1.2 V         1.4 V to 1.6 V         2.3 V to 2.7 V         3 V to 3.6 V         1.2 V         1.4 V to 1.6 V         1.2 V         2.3 V to 2.7 V         3.4 V to 1.6 V         1.65 V to 1.95 V         2.3 V to 2.7 V | -4               | mA                      |                         |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: Control inputs         Image: Control inputs | -8                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                         |                         |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 3 V to 3.6 V     |                         | -16                     |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 V            |                         | 1                       |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4 V to 1.6 V   |                         | 2                       |      |
| I <sub>OL</sub>  | Low-level output current (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B port)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    | 1.65 V to 1.95 V |                         | 4                       | mA   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3 V to 2.7 V   |                         | 8                       |      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    | 3 V to 3.6 V     |                         | 16                      |      |
| Δt/Δv            | Input transition rise or fall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                         | 5                       | ns/V |
| T <sub>A</sub>   | Operating free-air temper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | -40                     | 85                      | °C   |

V<sub>CCI</sub> is the V<sub>CC</sub> associated with the input port.
 V<sub>CCO</sub> is the V<sub>CC</sub> associated with the output port.
 All unused data inputs of the device must be held at V<sub>CCI</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
 CMD-dir, DAT0-dir, and DAT123-dir are referenced to V<sub>CCA</sub>.

8



### **ELECTRICAL CHARACTERISTICS**

over recommended operating free-air temperature range (unless otherwise noted)<sup>(1)(2)</sup>

| PA                     | RAMETER                 | TEST CON                                                              | DITIONS                                                            | V <sub>CCA</sub> | V <sub>CCB</sub> | MIN                    | TYP <sup>(3)</sup> | MAX      | UNI |
|------------------------|-------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|------------------|------------------|------------------------|--------------------|----------|-----|
|                        |                         | I <sub>OH</sub> = −100 μA                                             |                                                                    | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   | V <sub>CCO</sub> – 0.2 |                    |          |     |
|                        |                         | $I_{OH} = -1 \text{ mA}$                                              |                                                                    | 1.2 V            | 1.2 V            |                        | 0.9                |          |     |
| ( ) )                  | Anort                   | I <sub>OH</sub> = -1 mA                                               |                                                                    | 1.4 V            | 1.4 V            | 1.05                   |                    |          |     |
| V <sub>OH</sub>        | A port                  | $I_{OH} = -2 \text{ mA}$                                              | $V_{I} = V_{IH}$                                                   | 1.65 V           | 1.65 V           | 1.2                    |                    |          | V   |
|                        |                         | $I_{OH} = -4 \text{ mA}$                                              |                                                                    | 2.3 V            | 2.3 V            | 1.75                   |                    |          |     |
|                        |                         | I <sub>OH</sub> =8 mA                                                 |                                                                    | 3 V              | 3 V              | 2.3                    |                    |          |     |
|                        |                         | I <sub>OL</sub> = 100 μA                                              |                                                                    | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                        |                    | 0.2      |     |
|                        |                         | I <sub>OL</sub> = 1 mA                                                |                                                                    | 1.2 V            | 1.2 V            |                        | 0.1                |          |     |
| ,                      | A                       | I <sub>OL</sub> = 1 mA                                                | ., .,                                                              | 1.4 V            | 1.4 V            |                        |                    | 0.35     |     |
| V <sub>OL</sub>        | A port                  | $I_{OL} = 2 \text{ mA}$                                               | $V_{I} = V_{IL}$                                                   | 1.65 V           | 1.65 V           |                        |                    | 0.45     | V   |
|                        |                         | $I_{OL} = 4 \text{ mA}$                                               |                                                                    | 2.3 V            | 2.3 V            |                        |                    | 0.55     |     |
|                        |                         | I <sub>OL</sub> = 8 mA                                                |                                                                    | 3 V              | 3 V              |                        |                    | 0.7      |     |
|                        |                         | I <sub>OH</sub> = -100 μA                                             |                                                                    | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   | V <sub>CCO</sub> – 0.2 |                    |          |     |
|                        | I <sub>OH</sub> = -1 mA |                                                                       | 1.2 V                                                              | 1.2 V            |                  | 1.1                    |                    |          |     |
| ,                      | Durant                  | $I_{OH} = -2 \text{ mA}$                                              | ., .,                                                              | 1.4 V            | 1.4 V            | 1.05                   |                    |          | V   |
| V <sub>OH</sub> B port | B port                  | I <sub>OH</sub> =4 mA                                                 | $V_{I} = V_{IH}$                                                   | 1.65 V           | 1.65 V           | 1.2                    |                    |          |     |
|                        |                         | I <sub>OH</sub> =8 mA                                                 |                                                                    | 2.3 V            | 2.3 V            | 1.75                   |                    |          |     |
|                        |                         | I <sub>OH</sub> = -16 mA                                              |                                                                    | 3 V              | 3 V              | 2.1                    |                    |          |     |
|                        |                         | I <sub>OL</sub> = 100 μA                                              |                                                                    | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                        |                    | 0.2      | V   |
|                        |                         | I <sub>OL</sub> = 1 mA                                                |                                                                    | 1.2 V            | 1.2 V            |                        | 0.07               |          |     |
|                        | <b>D</b> (              | $I_{OL} = 2 \text{ mA}$                                               | V <sub>I</sub> = V <sub>IL</sub>                                   | 1.4 V            | 1.4 V            |                        |                    | 0.35     |     |
| V <sub>OL</sub>        | B port                  | I <sub>OL</sub> = 4 mA                                                |                                                                    | 1.65 V           | 1.65 V           |                        |                    | 0.45     |     |
|                        |                         | I <sub>OL</sub> = 8 mA                                                |                                                                    | 2.3 V            | 2.3 V            |                        |                    | 0.55     |     |
|                        |                         | I <sub>OL</sub> = 16 mA                                               |                                                                    | 3 V              | 3 V              |                        |                    | 0.79     |     |
| I                      | Control<br>inputs       | $V_{I} = V_{CCA}$ or GND                                              | L                                                                  | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                        |                    | ±1       | μA  |
| oz <sup>(4)</sup>      | A or B port             | $V_{O} = V_{CCO} \text{ or GND},$<br>$V_{I} = V_{CCI} \text{ or GND}$ | See function<br>table for input<br>states when<br>outputs are Hi Z | 3.6 V            | 3.6 V            |                        |                    | ±5       | μA  |
|                        |                         |                                                                       | 1                                                                  | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                        |                    | 10       |     |
| CCA                    |                         | $V_I = V_{CCI}$ or GND,                                               | $I_{O} = 0$                                                        | 3.6 V            | 0 V              |                        |                    | 10       | μA  |
|                        |                         |                                                                       |                                                                    | 0 V              | 3.6 V            |                        |                    | -1       |     |
|                        |                         |                                                                       |                                                                    | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                        |                    | 10       |     |
| I <sub>CCB</sub>       |                         | $V_I = V_{CCI}$ or GND,                                               | I <sub>O</sub> = 0                                                 | 3.6 V            | 0 V              |                        |                    | -1       | μA  |
|                        |                         |                                                                       |                                                                    | 0 V              | 3.6 V            |                        |                    | 10       |     |
| CCA +                  | ссв                     | $V_I = V_{CCI}$ or GND,                                               | l <sub>O</sub> = 0                                                 | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                        |                    | 15       | μA  |
| Ci                     | Control inputs          | $V_{I} = V_{CCA}$ or GND                                              |                                                                    | 1.8 V            | 3 V              |                        | 1.5                | 2        | pF  |
|                        | Clock input<br>A port   | $V_0 = V_{CCA}$ or GND                                                |                                                                    |                  |                  |                        | 1.5<br>2.5         | 2<br>3.5 |     |
| Cio                    | B port                  | $V_0 = V_{CCB}$ or GND                                                |                                                                    | 1.8 V            | 3 V              |                        | 12                 | 14       | pF  |

(1)

 $V_{CCO}$  is the  $V_{CC}$  associated with the output port.  $V_{CCI}$  is the  $V_{CC}$  associated with the data input port. All typical values are at  $T_A$  = 25°C. For I/O ports, the parameter  $I_{OZ}$  includes the input leakage current. (2) (3) (4)

## OUTPUT SLEW RATES

over recommended operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

| PARAMETER      | FROM | то  | V <sub>CCA</sub> = 1.8 V ±<br>V <sub>CCB</sub> = 3 V ± | ± 0.15 V,<br>± 0.3 V | UNIT |
|----------------|------|-----|--------------------------------------------------------|----------------------|------|
|                |      |     | MIN                                                    | MAX                  |      |
| t <sub>r</sub> | 20%  | 80% |                                                        | 2.7 <sup>(2)</sup>   | ns   |
| t <sub>f</sub> | 80%  | 20% |                                                        | 2.5 <sup>(2)</sup>   | ns   |

(1) Values are characterized, but not production tested.

(2) Using  $C_L = 30 \text{ pF}$  on the B side and  $C_L = 7 \text{ pF}$  on the A side

## **TYPICAL SWITCHING CHARACTERISTICS**

 $T_A = 25^{\circ}C$ ,  $V_{CCA} = 1.2$  V (see Figure 5)

| PARAMETER                       | FROM    | TO       | V <sub>CCB</sub> =<br>1.2 V | V <sub>CCB</sub> =<br>1.5 V | V <sub>CCB</sub> =<br>1.8 V | V <sub>CCB</sub> =<br>2.5 V | V <sub>CCB</sub> =<br>3 V | UNIT |
|---------------------------------|---------|----------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|------|
|                                 | (INPUT) | (OUTPUT) | ТҮР                         | ТҮР                         | ТҮР                         | ТҮР                         | TYP                       |      |
|                                 | A       | В        | 4.9                         | 4                           | 3.5                         | 3.2                         | 3.2                       |      |
|                                 | В       | А        | 5.3                         | 4.3                         | 4.1                         | 3.9                         | 3.9                       |      |
|                                 | CLKA    | CLKB     | 5.1                         | 4                           | 3.5                         | 3.1                         | 3.1                       |      |
| t <sub>pd</sub>                 | CLKA    | CLK-f    | 10.3                        | 8.9                         | 7.7                         | 7.7                         | 7.7                       | ns   |
|                                 | CMDA    | CMDB     | 4.9                         | 4                           | 3.5                         | 3.2                         | 3.2                       |      |
|                                 | CMDB    | CMDA     | 4.8                         | 4.4                         | 4.2                         | 4                           | 4                         |      |
| t <sub>en</sub> <sup>(1)</sup>  | DIR     | А        | 5.3                         | 5.4                         | 5.2                         | 6                           | 5.9                       | ns   |
| t <sub>dis</sub> <sup>(1)</sup> | DIR     | А        | 5.5                         | 5.4                         | 5.5                         | 5.6                         | 5.5                       | ns   |

(1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

## SWITCHING CHARACTERISTICS

 $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ 

over recommended operating free-air temperature range (see Figure 5)

| PARAMETER                       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> =<br>± 0.1 |      | V <sub>CCB</sub> =<br>± 0.1 |      | V <sub>CCB</sub> =<br>± 0.2 |      | V <sub>ССВ</sub> =<br>± 0.3 |      | V <sub>CCB</sub> =<br>± 0.3 |      | UNIT |
|---------------------------------|-----------------|----------------|-----------------------------|------|-----------------------------|------|-----------------------------|------|-----------------------------|------|-----------------------------|------|------|
|                                 |                 | (001F01)       | MIN                         | MAX  | 1    |
|                                 | А               | В              | 1.2                         | 7.2  | 0.8                         | 6.3  | 0.8                         | 5.4  | 0.9                         | 5.1  | 0.9                         | 5.1  |      |
|                                 | В               | А              | 1.1                         | 6.2  | 1                           | 7.2  | 0.93                        | 6.6  | 0.45                        | 7    | 0.45                        | 7    |      |
|                                 | CLKA            | CLKB           | 1.4                         | 7.1  | 1.1                         | 6.2  | 0.8                         | 5.3  | 0.7                         | 5.1  | 0.7                         | 5.1  | 20   |
| t <sub>pd</sub>                 | ULKA            | CLK-f          | 1.1                         | 12.7 | 1.3                         | 13.3 | 1.3                         | 10.6 | 1.9                         | 10.9 | 1.9                         | 10.9 | ns   |
|                                 | CMDA            | CMDB           | 1.1                         | 6    | 0.9                         | 5.6  | 0.7                         | 4.7  | 0.6                         | 4.1  | 0.6                         | 4.1  |      |
|                                 | CMDB            | CMDA           | 0.8                         | 5.9  | 0.8                         | 6.8  | 0.8                         | 6.4  | 0.1                         | 6.7  | 0.1                         | 6.7  |      |
| t <sub>en</sub> <sup>(1)</sup>  | DIR             | А              | 1.0                         | 9.1  | 1.1                         | 10.3 | 1.1                         | 8.7  | 1.1                         | 11   | 1.1                         | 11   | ns   |
| t <sub>dis</sub> <sup>(1)</sup> | DIR             | А              | 1.1                         | 8.1  | 1.1                         | 8.3  | 1.1                         | 8.3  | 1.1                         | 8.3  | 1.1                         | 8.3  | ns   |

(1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

## SWITCHING CHARACTERISTICS

 $V_{CCA} = 1.8 V \pm 0.15 V$ 

over recommended operating free-air temperature range (see Figure 5)

| PARAMETER                       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1<br>± 0.15 |     | V <sub>CCB</sub> = 2<br>± 0.2 |     | V <sub>CCB</sub> = 3 V<br>± 0.3 V |     | V <sub>CCB</sub> = 3.3 V<br>± 0.3 V |     | UNIT |
|---------------------------------|-----------------|----------------|--------------------------------|-----|-------------------------------|-----|-----------------------------------|-----|-------------------------------------|-----|------|
|                                 | (INPUT)         | (OUTPUT)       | MIN                            | MAX | MIN                           | MAX | MIN                               | MAX | MIN                                 | MAX |      |
|                                 | А               | В              | 0.7                            | 5.8 | 0.6                           | 4.9 | 0.5                               | 4.7 | 0.5                                 | 4.7 |      |
|                                 | В               | А              | 0.7                            | 4.9 | 0.7                           | 4.5 | 0.2                               | 5.2 | 0.2                                 | 5.2 |      |
| t <sub>pd</sub>                 |                 | CLKB           | 0.9                            | 5.8 | 0.6                           | 4.9 | 0.6                               | 4.7 | 0.6                                 | 4.7 |      |
|                                 | CLKA            | CLKA           | CLK-f                          | 0.9 | 11                            | 0.9 | 9.2                               | 0.8 | 8.8                                 | 0.8 | 8.8  |
|                                 | CMDA            | CMDB           | 0.7                            | 4.3 | 0.5                           | 4.1 | 0.5                               | 3.4 | 0.5                                 | 3.4 |      |
|                                 | CMDB            | CMDA           | 0.7                            | 4.6 | 0.8                           | 4.2 | 0.1                               | 5   | 0.1                                 | 5   |      |
| t <sub>en</sub> <sup>(1)</sup>  | DIR             | А              | 0.7                            | 7.2 | 0.7                           | 6.6 | 0.7                               | 7.8 | 0.7                                 | 7.8 | ns   |
| t <sub>dis</sub> <sup>(1)</sup> | DIR             | А              | 1.0                            | 7.9 | 1                             | 7.7 | 1                                 | 8.2 | 1                                   | 8.2 | ns   |

(1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

## SWITCHING CHARACTERISTICS

 $V_{CCA} = 2.5 V \pm 0.2 V$ 

over recommended operating free-air temperature range(see Figure 5)

| PARAMETER                       | FROM    | TO       | V <sub>CCB</sub> = 2<br>± 0.2 |     | V <sub>CCB</sub> =<br>± 0.3 |     | V <sub>CCB</sub> = 3<br>± 0.3 |     | UNIT |
|---------------------------------|---------|----------|-------------------------------|-----|-----------------------------|-----|-------------------------------|-----|------|
|                                 | (INPUT) | (OUTPUT) | MIN                           | MAX | MIN                         | MAX | MIN                           | MAX |      |
|                                 | A       | В        | 0.5                           | 4.3 | 0.4                         | 4.1 | 0.4                           | 4.1 |      |
|                                 | В       | А        | 0.5                           | 3.5 | 0.2                         | 3.7 | 0.2                           | 3.7 |      |
|                                 | CLKA    | CLKB     | 0.5                           | 4.3 | 0.4                         | 4.1 | 0.4                           | 4.1 | 20   |
| t <sub>pd</sub>                 | CLKA    | CLK-f    | 0.4                           | 7.8 | 0.3                         | 7.3 | 0.3                           | 7.3 | ns   |
|                                 | CMDA    | CMDB     | 0.3                           | 3   | 0.3                         | 2.7 | 0.3                           | 2.7 |      |
|                                 | CMDB    | CMDA     | 0.7                           | 3   | 0.2                         | 3.4 | 0.2                           | 3.4 |      |
| t <sub>en</sub> <sup>(1)</sup>  | DIR     | А        | 0.5                           | 5.1 | 0.5                         | 5.6 | 0.5                           | 5.6 | ns   |
| t <sub>dis</sub> <sup>(1)</sup> | DIR     | A        | 0.7                           | 5.7 | 0.7                         | 6.7 | 0.7                           | 6.7 | ns   |

(1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

## SWITCHING CHARACTERISTICS

## $V_{CCA} = 3.3 V \pm 0.3 V$

over recommended operating free-air temperature range (see Figure 5)

| PARAMETER                       | FROM    | TO       | V <sub>CCB</sub> = 3<br>± 0.3 V | V   | V <sub>CCB</sub> = 3.3<br>± 0.3 V | 3 V | UNIT |
|---------------------------------|---------|----------|---------------------------------|-----|-----------------------------------|-----|------|
|                                 | (INPUT) | (OUTPUT) | MIN                             | MAX | MIN                               | MAX |      |
|                                 | A       | В        | 0.3                             | 3.8 | 0.3                               | 3.8 |      |
|                                 | В       | A        | 0.3                             | 3   | 0.3                               | 3   |      |
|                                 |         | CLKB     | 0.3                             | 3.8 | 0.3                               | 3.8 |      |
| t <sub>pd</sub>                 | CLKA    | CLK-f    | 0.1                             | 6.7 | 0.1                               | 6.7 | ns   |
|                                 | CMDA    | CMDB     | 0.2                             | 2.5 | 0.2                               | 2.5 |      |
|                                 | CMDB    | CMDA     | 0.4                             | 2.6 | 0.4                               | 2.6 |      |
| t <sub>en</sub> <sup>(1)</sup>  | DIR     | A        | 0.3                             | 4.5 | 0.3                               | 4.5 | ns   |
| t <sub>dis</sub> <sup>(1)</sup> | DIR     | А        | 0.9                             | 7.9 | 0.9                               | 7.9 | ns   |

(1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.



## TYPICAL FREQUENCY AND OUTPUT SKEW

 $T_A = 25^{\circ}C$ ,  $V_{CCA} = 1.2$  V (see Figure 5)

| PAI                | RAMETER                | FROM<br>(INPUT | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1.2 V | V <sub>CCB</sub> = 1.5<br>V | V <sub>CCB</sub> = 1.8 V | V <sub>CCB</sub> = 2.5<br>V | V <sub>CCB</sub> = 3 V | V <sub>CCB</sub> = 3.3<br>V | UNIT   |
|--------------------|------------------------|----------------|----------------|--------------------------|-----------------------------|--------------------------|-----------------------------|------------------------|-----------------------------|--------|
|                    |                        | )              | (001F01)       | TYP                      | TYP                         | TYP                      | TYP                         | TYP                    | TYP                         |        |
|                    | Clock                  | CLKA           | CLKB           | 95                       | 95                          | 95                       | 95                          | 95                     | 95                          |        |
|                    | CIOCK                  | CLKA           | CLK-f          | 95                       | 95                          | 95                       | 95                          | 95                     | 95                          | MHz    |
| t <sub>max</sub>   | Data                   | А              | В              | 95                       | 95                          | 95                       | 95                          | 95                     | 95                          | IVIFIZ |
|                    | Dala                   | В              | А              | 95                       | 95                          | 95                       | 95                          | 95                     | 95                          |        |
| t <sub>sk(o)</sub> | Channel-to-<br>channel | А              | В              | 0.1                      | 0.1                         | 0.1                      | 0.3                         | 0.2                    |                             | ns     |

## MAXIMUM FREQUENCY AND OUTPUT SKEW

 $V_{CCA} = 1.5 V \pm 0.1 V$ 

over recommended operating free-air temperature range (see Figure 5)

| PA                 | RAMETER                | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>ССВ</sub> =<br>± 0.1 |     | V <sub>ССВ</sub> =<br>± 0.1 |     | V <sub>CCB</sub> =<br>± 0.2 |     | V <sub>ССВ</sub> =<br>± 0.3 |     | V <sub>CCB</sub> =<br>± 0.3 |     | UNIT  |
|--------------------|------------------------|-----------------|----------------|-----------------------------|-----|-----------------------------|-----|-----------------------------|-----|-----------------------------|-----|-----------------------------|-----|-------|
|                    |                        |                 | (001201)       | MIN                         | MAX |       |
|                    | Clock                  | CLKA            | CLKB           | 95                          |     | 95                          |     | 95                          |     | 95                          |     | 95                          |     |       |
| £                  | CIOCK                  | ULKA            | CLK-f          | 95                          |     | 95                          |     | 95                          |     | 95                          |     | 95                          |     | MHz   |
| Imax               | Data                   | А               | В              | 95                          |     | 95                          |     | 95                          |     | 95                          |     | 95                          |     | IVITZ |
|                    | Dala                   | В               | А              | 95                          |     | 95                          |     | 95                          |     | 95                          |     | 95                          |     |       |
| t <sub>sk(o)</sub> | Channel-to-<br>channel | А               | В              |                             | 0.1 |                             | 0.1 |                             | 0.1 |                             | 0.1 |                             |     | ns    |

## MAXIMUM FREQUENCY AND OUTPUT SKEW

 $V_{CCA} = 1.8 V \pm 0.15 V$ 

over recommended operating free-air temperature range (see Figure 5)

| PA                 | RAMETER                | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1<br>± 0.15 | 1.8 V<br>5 V | V <sub>CCB</sub> = 2<br>± 0.2 |     | V <sub>CCB</sub> =<br>± 0.3 | 3 V<br>V | V <sub>CCB</sub> = 3<br>± 0.3 | 3.3 V<br>V | UNIT |
|--------------------|------------------------|-----------------|----------------|--------------------------------|--------------|-------------------------------|-----|-----------------------------|----------|-------------------------------|------------|------|
|                    |                        | (INPUT)         | (001901)       | MIN                            | MAX          | MIN                           | MAX | MIN                         | MAX      | MIN                           | MAX        |      |
|                    | Clock                  | CLIKA           | CLKB           | 95                             |              | 95                            |     | 95                          |          | 95                            |            |      |
| 4                  | CIOCK                  | CLKA            | CLK-f          | 95                             |              | 95                            |     | 95                          |          | 95                            |            |      |
| f <sub>max</sub>   | Dete                   | А               | В              | 95                             |              | 95                            |     | 95                          |          | 95                            |            | MHz  |
|                    | Data                   | В               | А              | 95                             |              | 95                            |     | 95                          |          | 95                            |            |      |
| t <sub>sk(o)</sub> | Channel-to-<br>channel | А               | В              |                                | 0.1          |                               | 0.2 |                             | 0.2      |                               |            | ns   |

## MAXIMUM FREQUENCY AND OUTPUT SKEW

 $V_{CCA} = 2.5 V \pm 0.2 V$ 

over recommended operating free-air temperature range (see Figure 5)

|                    | PARAMETER              | FROM    | TO       | V <sub>CCB</sub> = 2<br>± 0.2 |     | V <sub>CCB</sub> =<br>± 0.3 | 3 V<br>V | V <sub>CCB</sub> = 3<br>± 0.3 |     | UNIT  |
|--------------------|------------------------|---------|----------|-------------------------------|-----|-----------------------------|----------|-------------------------------|-----|-------|
|                    |                        | (INPUT) | (OUTPUT) | MIN                           | MAX | MIN                         | MAX      | MIN                           | MAX |       |
|                    | Clock                  | CLKA    | CLKB     | 95                            |     | 95                          |          | 95                            |     |       |
| £                  | CIUCK                  | CLKA    | CLK-f    | 95                            |     | 95                          |          | 95                            |     | MHz   |
| Imax               | Dete                   | А       | В        | 95                            |     | 95                          |          | 95                            |     | IVITZ |
|                    | Data                   | В       | А        | 95                            |     | 95                          |          | 95                            |     |       |
| t <sub>sk(o)</sub> | Channel-to-<br>channel | А       | В        |                               | 0.1 |                             | 0.3      |                               | 0.3 | ns    |

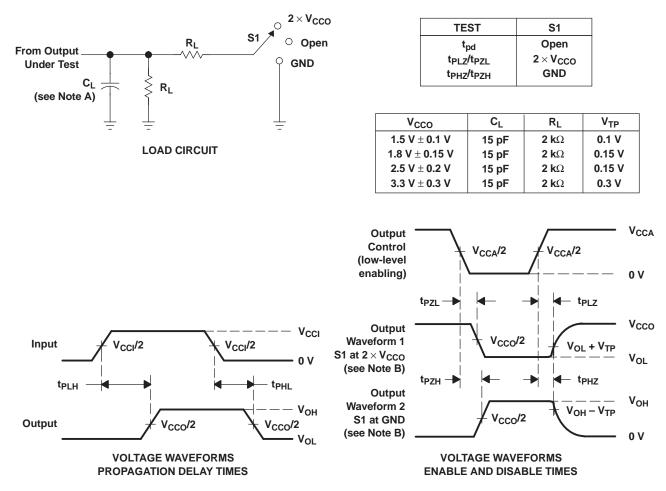
# MAXIMUM FREQUENCY AND OUTPUT SKEW

### $V_{CCA} = 3.3 V \pm 0.3 V$

over recommended operating free-air temperature range (see Figure 5)

| P                  | PARAMETER              | FROM    | TO       | V <sub>CCB</sub> = 3<br>± 0.3 V | V   | V <sub>CCB</sub> = 3.3<br>± 0.3 V | 3 V | UNIT  |
|--------------------|------------------------|---------|----------|---------------------------------|-----|-----------------------------------|-----|-------|
|                    |                        | (INPUT) | (OUTPUT) | MIN                             | MAX | MIN                               | MAX |       |
|                    | Clock                  | CLKA    | CLKB     | 95                              |     | 95                                |     |       |
| £                  | CIOCK                  | CLKA    | CLK-f    | 95                              |     | 95                                |     | MHz   |
| f <sub>max</sub>   | Data                   | A       | В        | 95                              |     | 95                                |     | IVITZ |
|                    | Data                   | В       | А        | 95                              |     | 95                                |     |       |
| t <sub>sk(o)</sub> | Channel-to-<br>channel | А       | В        |                                 | 0.3 |                                   |     | ns    |

## **OPERATING CHARACTERISTICS**


 $T_A = 25^{\circ}C$ 

| PARA                            | METER                                | TEST<br>CONDITIONS                                                      | V <sub>CCA</sub> =<br>V <sub>CCB</sub> = 1.2 V | V <sub>CCA</sub> =<br>V <sub>CCB</sub> = 1.5 V | V <sub>CCA</sub> =<br>V <sub>CCB</sub> = 1.8 V | V <sub>CCA</sub> =<br>V <sub>CCB</sub> = 2.5 V | V <sub>CCA</sub> =<br>V <sub>CCB</sub> = 3 V | V <sub>CCA</sub> =<br>V <sub>CCB</sub> = 3.3 V | UNIT |
|---------------------------------|--------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|------|
|                                 |                                      |                                                                         | TYP                                            | TYP                                            | TYP                                            | TYP                                            | TYP                                          | TYP                                            |      |
| C <sub>pdA</sub> <sup>(1)</sup> | A-port<br>input,<br>B-port<br>output | C <sub>L</sub> = 0,<br>f = 10 MHz,                                      | 4.5                                            | 4.7                                            | 4.9                                            | 5.5                                            | 6                                            | 6.4                                            | pF   |
| C <sub>pdA</sub> ` ′            | B-port<br>input,<br>A-port<br>output | $t_{\rm r} = 10$ MHz,<br>$t_{\rm r} = t_{\rm f} = 1$ ns                 | 8                                              | 8.3                                            | 8.5                                            | 9.1                                            | 9.5                                          | 9.7                                            | ۴.   |
| C <sub>pdB</sub> <sup>(1)</sup> | A-port<br>input,<br>B-port<br>output | C <sub>L</sub> = 0,<br>f = 10 MHz,                                      | 27.9                                           | 27.8                                           | 27.7                                           | 27.6                                           | 27.6                                         | 27.5                                           | pF   |
| ⊂pdB`′                          | f = 10                               | $t_{\rm r} = 10 \text{ MHz},$<br>$t_{\rm r} = t_{\rm f} = 1 \text{ ns}$ | 2.6                                            | 2.5                                            | 2.4                                            | 2.3                                            | 1.8                                          | 1.8                                            | μĻ   |

(1) Power dissipation capacitance per transceiver







- NOTES: A. CL includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
     C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z<sub>O</sub> = 50 Ω, dv/dt ≥ 1 V/ns.
  - D. The outputs are measured one at a time, with one transition per measurement.
    - D. The outputs are measured one at a time, with one transition per measuremen
    - E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
    - F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
  - G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
  - H.  $V_{CCI}$  is the  $V_{CC}$  associated with the input port.
  - I.  $V_{CCO}$  is the  $V_{CC}$  associated with the output port.

#### Figure 5. Load Circuit and Voltage Waveforms

Copyright © 2007–2008, Texas Instruments Incorporated

### PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type                  | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup>  | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|----------------------------------|--------------------|------|----------------|----------------------------|------------------|------------------------------|
| SN74AVCA406EZQSR | ACTIVE                | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQS                | 24   | 2500           | Green (RoHS & no Sb/Br)    | SNAGCU           | Level-1-260C-UNLIM           |
| SN74AVCA406EZXYR | ACTIVE                | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZXY                | 20   | 2500           | Green (RoHS &<br>no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

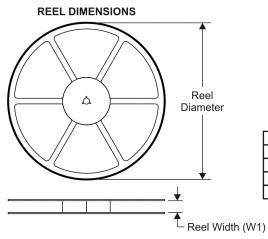
**OBSOLETE:** TI has discontinued the production of the device.

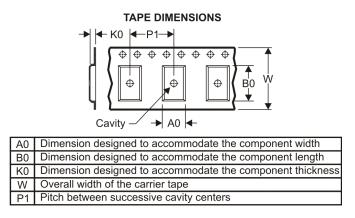
<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

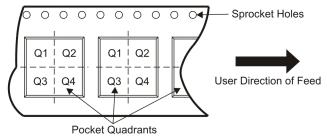
**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

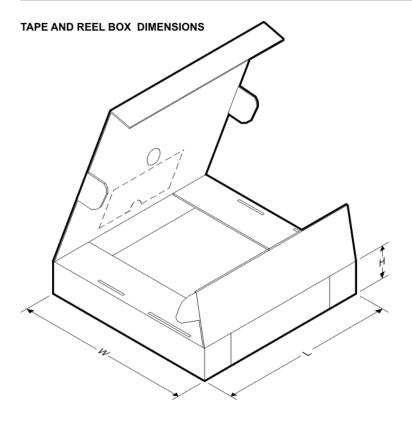

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION





## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

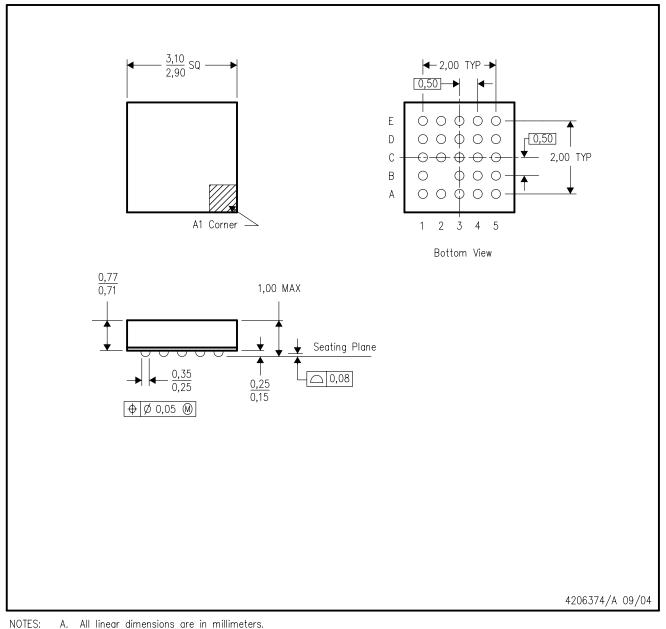



| *All dimensions are nominal |                                  |                    |    |      |                          |                          |         |         |         |            |           |                  |
|-----------------------------|----------------------------------|--------------------|----|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|------------------|
| Device                      | Package<br>Type                  | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74AVCA406EZQSR            | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQS                | 24 | 2500 | 330.0                    | 12.4                     | 3.3     | 3.3     | 1.6     | 8.0        | 12.0      | Q1               |
| SN74AVCA406EZXYR            | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZXY                | 20 | 2500 | 330.0                    | 12.4                     | 2.8     | 3.3     | 1.0     | 4.0        | 12.0      | Q2               |



# PACKAGE MATERIALS INFORMATION

19-Mar-2008

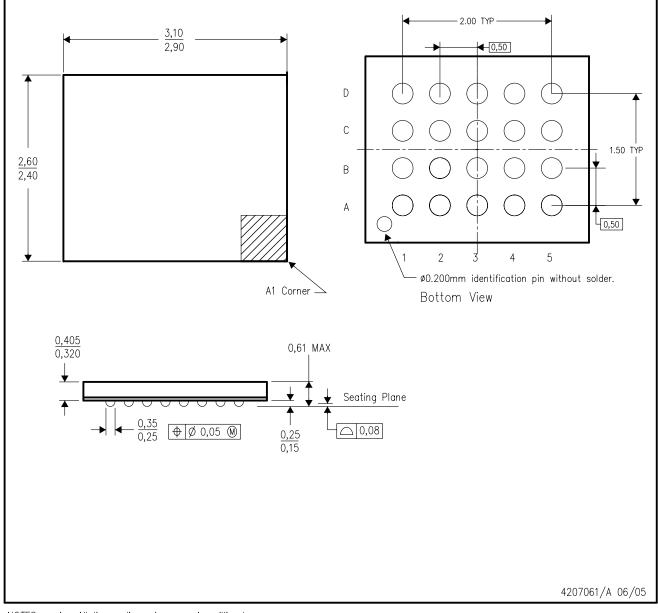



\*All dimensions are nominal

| Device           | Package Type            | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|-------------------------|-----------------|------|------|-------------|------------|-------------|
| SN74AVCA406EZQSR | BGA MICROSTAR<br>JUNIOR | ZQS             | 24   | 2500 | 340.5       | 338.1      | 20.6        |
| SN74AVCA406EZXYR | BGA MICROSTAR<br>JUNIOR | ZXY             | 20   | 2500 | 340.5       | 338.1      | 20.6        |

ZQS (S-PBGA-N24)

PLASTIC BALL GRID ARRAY




- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This package is lead-free.



ZXY (S-PBGA-N20)

PLASTIC BALL GRID ARRAY



NOTES:

A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

C. This package is a lead-free solder ball design.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications       |                           |
|-----------------------------|------------------------|--------------------|---------------------------|
| Amplifiers                  | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters             | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP                         | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Clocks and Timers           | www.ti.com/clocks      | Digital Control    | www.ti.com/digitalcontrol |
| Interface                   | interface.ti.com       | Medical            | www.ti.com/medical        |
| Logic                       | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt                  | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers            | microcontroller.ti.com | Security           | www.ti.com/security       |
| RFID                        | www.ti-rfid.com        | Telephony          | www.ti.com/telephony      |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video & Imaging    | www.ti.com/video          |
|                             |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated