

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD® MATCHED PAIR MOSFET ARRAY

 $V_{GS(th)} = +0.8V$

GENERAL DESCRIPTION

ALD110808A/ALD110808/ALD110908A/ALD110908 are monolithic quad/dual N-Channel MOSFETs matched at the factory using ALD's proven EPAD® CMOS technology. These devices are intended for low voltage, small signal applications.

These MOSFET devices are built on the same monolithic chip, so they exhibit excellent temperature tracking characteristics. They are versatile as circuit elements and are useful design component for a broad range of analog applications. They are basic building blocks for current sources, differential amplifier input stages, transmission gates, and multiplexer applications. For most applications, connect V- and N/C pins to the most negative voltage potential in the system and V+ pin to the most positive voltage potential (or left open unused). All other pins must have voltages within these voltage limits.

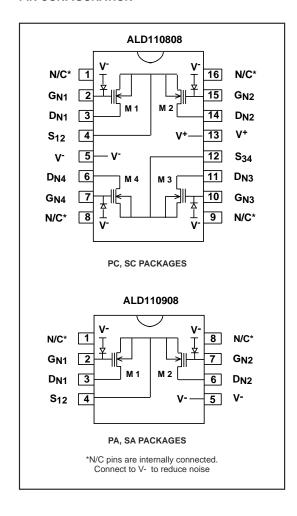
ALD110808/ALD110908 devices are built for minimum offset voltage and differential thermal response, and they are suited for switching and amplifying applications in +1.0V to +10V (+/- 5 V) systems where low input bias current, low input capacitance and fast switching speed are desired. As these are MOSFET devices, they feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment.

These devices are suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. The high input impedance and the high DC current gain of the Field Effect Transistors result from extremely low current loss through the control gate. The DC current gain is limited by the gate input leakage current, which is specified at 30pA at room temperature. For example, DC beta of the device at a drain current of 3mA and input leakage current of 30pA at 25°C is = 3mA/30pA = 100,000,000.

FEATURES

- Enhancement-mode (normally off)
- Standard Gate Threshold Voltages: +0.8V
- Matched MOSFET to MOSFET characteristics
- Tight lot to lot parametric control
- Low input capacitance
- VGS(th) match to 2mV and 10mV
- High input impedance $10^{12}\Omega$ typical
- Positive, zero, and negative VGS(th) temperature coefficient
- DC current gain >108
- · Low input and output leakage currents

ORDERING INFORMATION


0°C to +7		perature Range* 0°C to +70)°C	
16-Pin	16-Pin	8-Pin	8Pin	
Plastic Dip	SOIC	Plastic Dip	SOIC	
Package	Package	Package	Package	
ALD110808APC		ALD110908APA	ALD110908ASA	
ALD110808 PC		ALD110908PA	ALD110908SA	

^{*} Contact factory for industrial or military temp. ranges or user-specified threshold voltage values.

APPLICATIONS

- Precision current mirrors
- Precision current sources
- Voltage choppers
- · Differential amplifier input stage
- Voltage comparator
- Voltage bias circuits
- Sample and Hold
- Analog inverter
- Level shifters
- Source followers and buffers
- Current multipliers
- Analog switches / multiplexers

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Drain-Source voltage, V _{DS}	10.6V
Gate-Source voltage, V _{GS}	10.6V
Power dissipation	500 mW
Operating temperature range PA, SA, PC, SC package	0°C to +70°C
Storage temperature range	65°C to +150°C
Lead temperature, 10 seconds	+260°C

OPERATING ELECTRICAL CHARACTERISTICS

V+ = +5V (or open) V- = GND $T_A = 25^{\circ}C$ unless otherwise specified

CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

		ALD110808A / ALD110908A		ALD110808/ ALD110908					
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Condition
Gate Threshold Voltage	VGS(th)	0.78	0.80	0.82	0.78	0.80	0.82	V	I _{DS} =1μA V _{DS} = 0.1V
Offset Voltage VGS1-VGS2	Vos		1	2		3	10	mV	I _{DS} =1μA
VGS1-VGS2 Tempco	ΔVOS		5			5		μV/°C	VDS1= VDS2
GateThreshold Tempco	ΔVGS(th)			-1.7 0.0 +1.6			-1.7 0.0 +1.6	mV/°C	I _D = 1μA I _D = 20μA V _D S = 0.1V I _D = 40μA
On Drain Current	IDS (ON)		12.0 3.0			12.0 3.0		mA	VGS= +10.3V VGS= +4.8V VDS= +5V
Forward Transconductance	GFS		1.4			1.4		mmho	VGS = +4.8V VDS = +9.8V
Transconductance Mismatch	ΔGFS		1.8			1.8		%	
Output Conductance	GOS		68			68		μmho	VGS =+4.8V VDS = +9.8V
Drain Source On Resistance	RDS (ON)		500			500		Ω	VDS = 0.1V VGS = +4.8V
Drain Source On Resistance Mismatch	ΔRDS (ON)		0.5			0.5		%	
Drain Source Breakdown Voltage	BVDSX	10			10			V	IDS = 1.0μA VGS = -0.2V
Drain Source Leakage Current ¹	IDS (OFF)		10	100 4		10	100 4	pA nA	VGS = -0.2V VDS =10V, TA = 125°C
Gate Leakage Current1	IGSS		3	30 1		3	30 1	pA nA	VDS = 0V VGS = 10V T _A =125°C
Input Capacitance	CISS		2.5			2.5		pF	
Transfer Reverse Capacitance	CRSS		0.1			0.1		pF	
Turn-on Delay Time	ton		10			10		ns	V+ = 5V R _L = 5KΩ
Turn-off Delay Time	toff		10			10		ns	$V^+ = 5V$ RL= $5K\Omega$
Crosstalk			60			60		dB	f = 100KHz

Notes: ¹ Consists of junction leakage currents