100MHz Current Feedback Video Amplifier With Disable

The HA-5020 is a wide bandwidth, high slew rate amplifier optimized for video applications and gains between 1 and 10. Manufactured on Intersil's Reduced Feature Complementary Bipolar DI process, this amplifier uses current mode feedback to maintain higher bandwidth at a given gain than conventional voltage feedback amplifiers. Since it is a closed loop device, the HA-5020 offers better gain accuracy and lower distortion than open loop buffers.

The HA-5020 features low differential gain and phase and will drive two double terminated 75Ω coax cables to video levels with low distortion. Adding a gain flatness performance of 0.1 dB makes this amplifier ideal for demanding video applications. The bandwidth and slew rate of the HA-5020 are relatively independent of closed loop gain. The 100 MHz unity gain bandwidth only decreases to 60 MHz at a gain of 10 . The HA-5020 used in place of a conventional op amp will yield a significant improvement in the speed power product. To further reduce power, HA-5020 has a disable function which significantly reduces supply current, while forcing the output to a true high impedance state. This allows the outputs of multiple amplifiers to be wire-OR'd into multiplexer configurations. The device also includes output short circuit protection and output offset voltage adjustment.

For multi channel versions of the HA-5020 see the HA5022 dual with disable, HA5023 dual, HA5013 triple and HA5024 quad with disable op amp data sheets.

Pinout

Features

- Wide Unity Gain Bandwidth 100MHz
- Slew Rate. 800V/ $\mu \mathrm{s}$
- Output Current . $\pm 30 \mathrm{~mA}$ (Min)
- Drives 3.5 V into 75Ω
- Differential Gain . 0.03\%
- Differential Phase. 0.03°
- Low Input Voltage Noise 4.5nV/ $\sqrt{\mathrm{Hz}}$
- Low Supply Current . 10mA (Max)
- Wide Supply Range $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Output Enable/Disable
- High Performance Replacement for EL2020
- Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- Unity Gain Video/Wideband Buffer
- Video Gain Block
- Video Distribution Amp/Coax Cable Driver
- Flash A/D Driver
- Waveform Generator Output Driver
- Current to Voltage Converter; D/A Output Buffer
- Radar Systems
- Imaging Systems

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ}$ C)	PACKAGE	PKG. DWG. \#
HA3-5020-5	HA3-5020-5	0 to 75	8 Ld PDIP	E8.3
HA3-5020-5Z (Note)	HA3-5020-5Z	0 to 75	8 Ld PDIP (Pb-free)	E8.3
HA9P5020-5	50205	0 to 75	8 Ld SOIC	M8.15
HA9P5020-5Z (Note)	$50205 Z$	0 to 75	8 Ld SOIC (Pb-free)	M8.15
HA9P5020-5X96	50205	0 to 75	8 Ld SOIC Tape and Reel	M8.15
HA9P5020-5ZX96 (Note)	$50205 Z$	0 to 75	8 Ld SOIC Tape and Reel (Pb-free)	M8.15

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings (Note 1)

Voltage Between V+ and V- Terminals 36V
DC Input Voltage . $\pm \mathrm{V}_{\text {SUPPLY }}$
Differential Input Voltage . 10V
Output Current . Short Circuit Protected

Operating Conditions

Temperature Range
HA-5020-5
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

| Thermal Resistance (Typical, Note 2) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: | :---: | :---: |
| PDIP Package | 120 | N/A |
| SOIC Package | 165 | N/A |

Maximum Junction Temperature (Plastic Packages, Note 1) . . . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) 300º C (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $150^{\circ} \mathrm{C}$ for plastic packages.
2. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, A_{V}=+1, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

$V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)						
PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25 to 85	± 12	± 12.7	-	V
		-40 to 0	± 11	± 11.8	-	V
Output Current (Guaranteed by Output Voltage Test)		25	± 30	± 31.7	-	mA
		Full	± 27.5	-	-	mA
POWER SUPPLY CHARACTERISTICS						
Quiescent Supply Current (Note 14)		Full	-	7.5	10	mA
Supply Current, Disabled (Note 14)	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	5	7.5	mA
$\overline{\text { Disable Pin Input Current }}$	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable (Note 4)		Full	350	-	-	$\mu \mathrm{A}$
Maximum Pin 8 Current to Enable (Note 5)		Full	-	-	20	$\mu \mathrm{A}$
AC CHARACTERISTICS ($\mathrm{A}_{\mathrm{V}}=+1$)						
Slew Rate (Note 6)		25	600	800	-	$\mathrm{V} / \mu \mathrm{s}$
		Full	500	700	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth (Note 7) (Guaranteed by Slew Rate Test)		25	9.6	12.7	-	MHz
		Full	8.0	11.1	-	MHz
Rise Time (Note 8)		25	-	5	-	ns
Fall Time (Note 8)		25	-	5	-	ns
Propagation Delay (Notes 8, 14)		25	-	6	-	ns
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	100	-	MHz
Settling Time to 1\%	10V Output Step	25	-	45	-	ns
Settling Time to 0.25\%	10V Output Step	25	-	100	-	ns
AC CHARACTERISTICS ($\mathrm{A}_{V}=+10, \mathrm{R}_{\mathrm{F}}=383 \Omega$)						
Slew Rate (Notes 6, 9)		25	900	1100	-	$\mathrm{V} / \mu \mathrm{s}$
		Full	700	-	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth (Note 7) (Guaranteed by Slew Rate Test)		25	14.3	17.5	-	MHz
		Full	11.1	-	-	MHz
Rise Time (Note 8)		25	-	8	-	ns
Fall Time (Note 8)		25	-	8	-	ns
Propagation Delay (Notes 8, 14)		25	-	9	-	ns
-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	60	-	MHz
Settling Time to 1\%	10 V Output Step	25	-	55	-	ns
Settling Time to 0.1\%	10V Output Step	25	-	90	-	ns
INTERSIL VALUE ADDED SPECIFICATIONS						
Input Noise Voltage (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	25	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Common Mode Range		Full	± 10	± 12	-	V
${ }^{-1}$ IIAS Adjust Range (Note 3)		Full	± 25	± 40	-	$\mu \mathrm{A}$
Overshoot (Note 14)		25	-	7	-	\%

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
Output Current, Short Circuit (Note 14)	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	Full	± 50	± 65	-	mA
Output Current, Disabled (Note 14)	$\begin{aligned} & \overline{\text { DISABLE }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$	Full	-	-	1	$\mu \mathrm{A}$
Output Disable Time (Notes 10, 14)		25	-	10	-	$\mu \mathrm{s}$
Output Enable Time (Notes 11, 14)		25	-	200	-	ns
Supply Voltage Range		25	± 5	-	± 15	V
Output Capacitance, Disabled (Note 12)	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	25	-	6	-	pF
VIDEO CHARACTERISTICS						
Differential Gain (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	\%
Differential Phase (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	-
Gain Flatness	To 5MHz	25	-	0.1	-	dB

Electrical Specifications $\quad \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation.

Electrical Specifications

$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation. (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
Open Loop DC Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V} \end{aligned}$	25	50	-	-	dB
		Full	45	-	-	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 14)		25 to 85	± 2.5	± 3.0	-	V
		-40 to 0	± 2.5	± 3.0	-	V
Output Current (Guaranteed by Output Voltage Test)	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	25	± 16.6	± 20	-	mA
		Full	± 16.6	± 20	-	mA
POWER SUPPLY CHARACTERISTICS						
Quiescent Supply Current (Note 14)		Full	-	7.5	10	mA
Supply Current, Disabled (Note 14)	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	5	7.5	mA
$\overline{\text { Disable Pin Input Current }}$	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable (Note 16)		Full	350	-	-	$\mu \mathrm{A}$
Maximum Pin 8 Current to Enable (Note 5)		Full	-	-	20	$\mu \mathrm{A}$
AC CHARACTERISTICS ($\mathrm{A}_{\mathrm{V}}=+1$)						
Slew Rate (Note 17)		25	215	400	-	V/ $\mu \mathrm{s}$
Full Power Bandwidth (Note 18)		25	22	28	-	MHz
Rise Time (Note 8)		25	-	6	-	ns
Fall Time (Note 8)		25	-	6	-	ns
Propagation Delay (Note 8)		25	-	6	-	ns
Overshoot		25	-	4.5	-	\%
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	125	-	MHz
Settling Time to 1\%	2V Output Step	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	25	-	75	-	ns
AC CHARACTERISTICS ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=681 \Omega$)						
Slew Rate (Note 17)		25	-	475	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth (Note 18)		25	-	26	-	MHz
Rise Time (Note 8)		25	-	6	-	ns
Fall Time (Note 8)		25	-	6	-	ns
Propagation Delay (Note 8)		25	-	6	-	ns
Overshoot		25	-	12	-	\%
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	95	-	MHz
Settling Time to 1%	2V Output Step	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	25	-	100	-	ns
AC CHARACTERISTICS ($A_{V}=+10, \mathrm{R}_{\mathrm{F}}=383 \Omega$)						
Slew Rate (Note 17)		25	350	475	-	V/ $\mu \mathrm{s}$
Full Power Bandwidth (Note 18)		25	28	38	-	MHz
Rise Time (Note 8)		25	-	8	-	ns
Fall Time (Note 8)		25	-	9	-	ns
Propagation Delay (Note 8)		25	-	9	-	ns
Overshoot		25	-	1.8	-	\%

Electrical Specifications $V+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation. (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	65	-	MHz
Settling Time to 1\%	2V Output Step	25	-	75	-	ns
Setting Time to 0.25\%	2V Output Step	25	-	130	-	ns
INTERSIL VALUE ADDED SPECIFICATIONS						
Input Noise Voltage (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	25	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Common Mode Range		Full	$\pm 2.5 \mathrm{~V}$	-	-	V
Output Current, Short Circuit	$\mathrm{V}_{\text {IN }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	Full	± 40	± 60	-	mA
Output Current, Disabled (Note 14)	$\begin{aligned} & \overline{\text { DISABLE }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$	Full	-	-	2	$\mu \mathrm{A}$
Output Disable Time (Notes 14, 20)		25	-	40	-	$\mu \mathrm{s}$
Output Enable Time (Notes 14, 21)		25	-	40	-	ns
Supply Voltage Range		25	± 5	-	± 15	V
Output Capacitance, Disabled (Note 19)	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	25	-	6	-	pF
VIDEO CHARACTERISTICS						
Differential Gain (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	\%
Differential Phase (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	-
Gain Flatness	To 5MHz	25	-	0.1	-	dB

NOTES:
2. Suggested V_{OS} Adjust Circuit: The inverting input current ($-\mathrm{I}_{\mathrm{BIAS}}$) can be adjusted with an external $10 \mathrm{k} \Omega$ pot between pins 1 and 5 , wiper connected to $\mathrm{V}+$. Since - $\mathrm{I}_{\text {BIAS }}$ flows through the feedback resistor $\left(\mathrm{R}_{\mathrm{F}}\right)$, the result is an adjustment in offset voltage. The amount of offset voltage adjustment is determined by the value of $R_{F}\left(\Delta V_{O S}=\Delta-I_{B I A S}{ }^{*} R_{F}\right)$.
3. $R_{L}=100 \Omega, \mathrm{~V}_{I N}=10 \mathrm{~V}$. This is the minimum current which must be pulled out of the $\overline{\text { Disable pin in order to disable the output. The output is }}$ considered disabled when $-10 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{mV}$.
4. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$. This is the maximum current that can be pulled out of the $\overline{\text { Disable }}$ pin with the HA-5020 remaining enabled. The HA-5020 is considered disabled when the supply current has decreased by at least 0.5 mA .
5. $V_{\text {OUT }}$ switches from -10 V to +10 V , or from +10 V to -10 V . Specification is from the 25% to 75% points.
6. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=10 \mathrm{~V}$.
7. $R_{L}=100 \Omega, V_{\text {OUT }}=1 \mathrm{~V}$. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
9. $\mathrm{V}_{I N}=+10 \mathrm{~V}, \overline{\overline{\text { Disable }}}=+15 \mathrm{~V}$ to 0 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
10. $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$, Disable $=0 \mathrm{~V}$ to +15 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $\mathrm{V}_{\mathrm{OUT}}=10 \mathrm{~V}$.
11. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Force $\mathrm{V}_{\mathrm{OUT}}$ from 0 V to $\pm 10 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$.
12. Measured with a VM700A video tester using a NTC-7 composite VITS.
13. See "Typical Performance Curves" for more information.
14. $\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because short test duration does not allow self heating.
15. $R_{L}=100 \Omega . V_{I N}=2.5 \mathrm{~V}$. This is the minimum current which must be pulled out of the $\overline{\text { Disable }}$ pin in order to disable the output. The output is considered disabled when $-10 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{mV}$.
16. $\mathrm{V}_{\text {OUT }}$ switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
17. $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi \mathrm{~V}_{\text {PEAK }}} ; \mathrm{V}_{\text {PEAK }}=2 \mathrm{~V}$.
18. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Force $\mathrm{V}_{\mathrm{OUT}}$ from 0 V to $\pm 2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$.
19. $\mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V}$, $\overline{\text { Disable }}=+5 \mathrm{~V}$ to 0 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$.
20. $\mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V}$, Disable $=0 \mathrm{~V}$ to +5 V . Measured from the 50% point of Disable to $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$.

Dual-In-Line Plastic Packages (PDIP)

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum -C .
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1,N,N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS							
	MIN	MAX	MIN	MAX						
A	-	0.210	-	5.33	4					
A1	0.015	-	0.39	-	4					
A2	0.115	0.195	2.93	4.95	-					
B	0.014	0.022	0.356	0.558	-					
B1	0.045	0.070	1.15	1.77	8,10					
C	0.008	0.014	0.204	0.355	-					
D	0.355	0.400	9.01	10.16	5					
D1	0.005	-	0.13	-	5					
E	0.300	0.325	7.62	8.25	6					
E1	0.240	0.280	6.10	7.11	5					
e	0.100	BSC	2.54	BSC	-					
$e_{\text {A }}$	0.300	BSC	7.62	BSC	6					
$\mathrm{e}_{\text {B }}$	-	0.430	-	10.92	7					
L	0.115	0.150	2.93	3.81	4					
N	8								8	9

Rev. 0 12/93

