FN2845.11

Data Sheet

100MHz Current Feedback Video Amplifier With Disable

The HA-5020 is a wide bandwidth, high slew rate amplifier optimized for video applications and gains between 1 and 10. Manufactured on Intersil's Reduced Feature Complementary Bipolar DI process, this amplifier uses current mode feedback to maintain higher bandwidth at a given gain than conventional voltage feedback amplifiers. Since it is a closed loop device, the HA-5020 offers better gain accuracy and lower distortion than open loop buffers.

The HA-5020 features low differential gain and phase and will drive two double terminated 75Ω coax cables to video levels with low distortion. Adding a gain flatness performance of 0.1dB makes this amplifier ideal for demanding video applications. The bandwidth and slew rate of the HA-5020 are relatively independent of closed loop gain. The 100MHz unity gain bandwidth only decreases to 60MHz at a gain of 10. The HA-5020 used in place of a conventional op amp will yield a significant improvement in the speed power product. To further reduce power, HA-5020 has a disable function which significantly reduces supply current, while forcing the output to a true high impedance state. This allows the outputs of multiple amplifiers to be wire-OR'd into multiplexer configurations. The device also includes output short circuit protection and output offset voltage adjustment.

For multi channel versions of the HA-5020 see the HA5022 dual with disable, HA5023 dual, HA5013 triple and HA5024 quad with disable op amp data sheets.

Pinout

Features

,	Wide Unity Gain Bandwidth 100MHz
,	Slew Rate
,	$\label{eq:constraint} Output \ Current \ \dots \ \ \pm 30 mA \ (Min)$
•	Drives 3.5V into 75Ω
,	Differential Gain 0.03%
•	Differential Phase
•	Low Input Voltage Noise 4.5nV/ $\sqrt{\text{Hz}}$
•	Low Supply Current
•	Wide Supply Range
•	Output Enable/Disable

- High Performance Replacement for EL2020
- Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- Unity Gain Video/Wideband Buffer
- Video Gain Block
- Video Distribution Amp/Coax Cable Driver
- Flash A/D Driver
- Waveform Generator Output Driver
- Current to Voltage Converter; D/A Output Buffer
- Radar Systems
- Imaging Systems

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
HA3-5020-5	HA3-5020-5	0 to 75	8 Ld PDIP	E8.3
HA3-5020-5Z (Note)	HA3-5020-5Z	0 to 75	8 Ld PDIP (Pb-free)	E8.3
HA9P5020-5	50205	0 to 75	8 Ld SOIC	M8.15
HA9P5020-5Z (Note)	50205Z	0 to 75	8 Ld SOIC (Pb-free)	M8.15
HA9P5020-5X96	50205	0 to 75	8 Ld SOIC Tape and Reel	M8.15
HA9P5020-5ZX96 (Note)	50205Z	0 to 75	8 Ld SOIC Tape and Reel (Pb-free)	M8.15

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings (Note 1)

Voltage Between V+ and V- Terminals	36V
DC Input Voltage ±V _{SUP}	PLY
Differential Input Voltage	10V
Output Current Short Circuit Protect	cted

Operating Conditions

Temperature Range

HA-5020-5 0°C to 75°C

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (°C/W	/) θ _{JC} (°C/W)
PDIP Package	120	N/A
SOIC Package	165	N/A
Maximum Junction Temperature (Plastic Pa	ckages, No	ote 1) 150°C
Maximum Storage Temperature Range		-65°C to 150°C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 150°C for plastic packages.

1. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

		TEMP.				
PARAMETER	TEST CONDITIONS	(°C)	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS		T.		1	T	1
Input Offset Voltage (Notes 3, 14)		25	-	2	8	mV
		Full	-	-	10	mV
Average Input Offset Voltage Drift		Full	-	10	-	μV/°C
V _{IO} Common Mode Rejection Ratio (Note 14)	$V_{CM} = \pm 10V$	25	60	-	-	dB
		Full	50	-	-	dB
V _{IO} Power Supply Rejection Ratio (Note 14)	$\pm 4.5V \leq V_S \leq \pm 18V$	25	64	-	-	dB
		Full	60	-	-	dB
Non-Inverting Input (+IN) Current (Note 14)		25	-	3	8	μA
		Full	-	-	20	μA
+IN Common Mode Rejection	V _{CM} = ±10V	25	-	-	0.1	μA/V
		Full	-	-	0.5	μA/V
+IN Power Supply Rejection	$\pm 4.5V \leq V_S \leq \pm 18V$	25	-	-	0.06	μA/V
IN Power Supply Rejection		Full	-	-	0.2	μA/V
Inverting Input (-IN) Current (Note 14)		25	-	12	20	μA
		Full	-	25	50	μA
-IN Common Mode Rejection	V _{CM} = ±10V	25	-	-	0.4	μA/V
		Full	-	-	0.5	μA/V
-IN Power Supply Rejection	$\pm 4.5V \leq V_S \leq \pm 18V$	25	-	-	0.2	μA/V
		Full	-	-	0.5	μA/V
TRANSFER CHARACTERISTICS		I		I		
Transimpedance (Notes 9, 14)		25	3500	-	-	V/mA
		Full	1000	-	-	V/mA
Open Loop DC Voltage Gain (Note 9)	R _L = 400Ω,	25	70	-	-	dB
Open Loop DC Voltage Gain (Note 9)	$V_{OUT} = \pm 10V$	Full	65	-	-	dB
Open Loop DC Voltage Gain	R _L = 100Ω,	25	60	-	-	dB
	$V_{OUT} = \pm 2.5 V$	Full	55	-	-	dB

 V_{SUPPLY} = $\pm 15V,~R_F$ = 1k $\Omega,~A_V$ = +1, R_L = 400 $\Omega,~C_L \leq$ 10pF, Unless Otherwise Specified ~(Continued)

PARAMETER	TEST CONDITIONS	TEMP. (°C)	MIN	ТҮР	МАХ	UNITS
OUTPUT CHARACTERISTICS		L	1	1	1	
Output Voltage Swing (Note 14)	R _L = 150Ω	25 to 85	±12	±12.7	-	V
		-40 to 0	±11	±11.8	-	V
Output Current (Guaranteed by Output Voltage Test)		25	±30	±31.7	-	mA
		Full	±27.5	-	-	mA
POWER SUPPLY CHARACTERISTICS		ļ	ļ	Į	Į	Į
Quiescent Supply Current (Note 14)		Full	-	7.5	10	mA
Supply Current, Disabled (Note 14)	DISABLE = 0V	Full	-	5	7.5	mA
Disable Pin Input Current	DISABLE = 0V	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable (Note 4)		Full	350	-	-	μA
Maximum Pin 8 Current to Enable (Note 5)		Full	-	-	20	μA
AC CHARACTERISTICS (A _V = +1)	IL.		l	I	I	I
Slew Rate (Note 6)		25	600	800	-	V/µs
		Full	500	700	-	V/µs
Full Power Bandwidth (Note 7)		25	9.6	12.7	-	MHz
(Guaranteed by Slew Rate Test)		Full	8.0	11.1	-	MHz
Rise Time (Note 8)		25	-	5	-	ns
Fall Time (Note 8)		25	-	5	-	ns
Propagation Delay (Notes 8, 14)		25	-	6	-	ns
-3dB Bandwidth (Note 14)	V _{OUT} = 100mV	25	-	100	-	MHz
Settling Time to 1%	10V Output Step	25	-	45	-	ns
Settling Time to 0.25%	10V Output Step	25	-	100	-	ns
AC CHARACTERISTICS ($A_V = +10$, $R_F = 383\Omega$)		1	I	1	1	1
Slew Rate (Notes 6, 9)		25	900	1100	-	V/µs
		Full	700	-	-	V/µs
Full Power Bandwidth (Note 7)		25	14.3	17.5	-	MHz
(Guaranteed by Slew Rate Test)		Full	11.1	-	-	MHz
Rise Time (Note 8)		25	-	8	-	ns
Fall Time (Note 8)		25	-	8	-	ns
Propagation Delay (Notes 8, 14)		25	-	9	-	ns
-3dB Bandwidth	V _{OUT} = 100mV	25	-	60	-	MHz
Settling Time to 1%	10V Output Step	25	-	55	-	ns
Settling Time to 0.1%	10V Output Step	25	-	90	-	ns
INTERSIL VALUE ADDED SPECIFICATIONS		1	I		1	1
Input Noise Voltage (Note 14)	f = 1kHz	25	-	4.5	-	nV/√Hz
+Input Noise Current (Note 14)	f = 1kHz	25	-	2.5	-	pA/√Hz
-Input Noise Current (Note 14)	f = 1kHz	25	-	25	-	pA/√Hz
Input Common Mode Range		Full	±10	±12	-	V
-I _{BIAS} Adjust Range (Note 3)		Full	±25	±40	-	μΑ
Overshoot (Note 14)		25	-	7	-	%

 V_{SUPPLY} = $\pm 15V,$ R_F = 1k $\Omega,$ A_V = +1, R_L = 400 $\Omega,$ $C_L \leq$ 10pF, Unless Otherwise Specified $\,$ (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (°C)	MIN	ТҮР	МАХ	UNITS
Output Current, Short Circuit (Note 14)	$V_{IN} = \pm 10V$, $V_{OUT} = 0V$	Full	±50	±65	-	mA
Output Current, Disabled (Note 14)		Full	-	-	1	μΑ
Output Disable Time (Notes 10, 14)		25	-	10	-	μS
Output Enable Time (Notes 11, 14)		25	-	200	-	ns
Supply Voltage Range		25	±5	-	±15	V
Output Capacitance, Disabled (Note 12)	DISABLE = 0V	25	-	6	-	pF
VIDEO CHARACTERISTICS						
Differential Gain (Notes 13, 14)	R _L = 150Ω	25	-	0.03	-	%
Differential Phase (Notes 13, 14)	R _L = 150Ω	25	-	0.03	-	o
Gain Flatness	To 5MHz	25	-	0.1	-	dB

lot-to-lot variation.

PARAMETER	TEST CONDITIONS	TEMP. (°C)	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS						1
Input Offset Voltage (Notes 3, 14)		25	-	2	8	mV
		Full	-	-	10	mV
Average Input Offset Voltage Drift		Full	-	10	-	μV/°C
V _{IO} Common Mode Rejection Ratio (Notes 14, 15)		25	50	-	-	dB
		Full	35	-	-	dB
V _{IO} Power Supply Rejection Ratio (Note 14)	$\pm 3.5 \text{V} \leq \text{V}_{S} \leq \pm 6.5 \text{V}$	25	55	-	-	dB
		Full	50	-	-	dB
Non-Inverting Input (+IN) Current (Note 14)		25	-	3	8	μA
		Full	-	-	20	μA
+IN Common Mode Rejection (Note 15)		25	-	-	0.1	μA/V
		Full	-	-	0.5	μA/V
+IN Power Supply Rejection	$\pm 3.5 \text{V} \leq \text{V}_S \leq \pm 6.5 \text{V}$	25	-	-	0.06	μA/V
		Full	-	-	0.2	μA/V
Inverting Input (-IN) Current (Note 14)		25	-	12	20	μA
		Full	-	25	50	μA
-IN Common Mode Rejection (Note 15)		25	-	-	0.4	μA/V
		Full	-	-	0.5	μA/V
-IN Power Supply Rejection	$\pm 3.5 \text{V} \leq \text{V}_{S} \leq \pm 6.5 \text{V}$	25	-	-	0.2	μA/V
		Full	-	-	0.5	μA/V
TRANSFER CHARACTERISTICS	L					1
Transimpedance (Notes 9, 14)		25	1000	-	-	V/mA
		Full	850	-	-	V/mA
Open Loop DC Voltage Gain	R _L = 400Ω,	25	65	-	-	dB
	$V_{OUT} = \pm 2.5 V$	Full	60	-	-	dB

V+ = +5V, V- = -5V, R_F = 1k Ω , A_V = +1, R_L = 400 Ω , C_L ≤10pF, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation. **(Continued)**

PARAMETER	TEST CONDITIONS	TEMP. (°C)	MIN	ТҮР	МАХ	UNITS
Open Loop DC Voltage Gain	R _L = 100Ω,	25	50	-	-	dB
	$V_{OUT} = \pm 2.5 V$	Full	45	-	-	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 14)		25 to 85	±2.5	±3.0	-	V
		-40 to 0	±2.5	±3.0	-	V
Output Current	R _L = 100Ω	25	±16.6	±20	-	mA
(Guaranteed by Output Voltage Test)		Full	±16.6	±20	-	mA
POWER SUPPLY CHARACTERISTICS		1	1		L	1
Quiescent Supply Current (Note 14)		Full	-	7.5	10	mA
Supply Current, Disabled (Note 14)	DISABLE = 0V	Full	-	5	7.5	mA
Disable Pin Input Current	DISABLE = 0V	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable (Note 16)		Full	350	-	-	μA
Maximum Pin 8 Current to Enable (Note 5)		Full	-	-	20	μA
AC CHARACTERISTICS $(A_V = +1)$			1			
Slew Rate (Note 17)		25	215	400	-	V/µs
Full Power Bandwidth (Note 18)		25	22	28	-	MHz
Rise Time (Note 8)		25	-	6	-	ns
Fall Time (Note 8)		25	-	6	-	ns
Propagation Delay (Note 8)		25	-	6	-	ns
Overshoot		25	-	4.5	-	%
-3dB Bandwidth (Note 14)	V _{OUT} = 100mV	25	-	125	-	MHz
Settling Time to 1%	2V Output Step	25	-	50	-	ns
Settling Time to 0.25%	2V Output Step	25	-	75	-	ns
AC CHARACTERISTICS ($A_V = +2$, $R_F = 681\Omega$)					L	
Slew Rate (Note 17)		25	-	475	-	V/µs
Full Power Bandwidth (Note 18)		25	-	26	-	MHz
Rise Time (Note 8)		25	-	6	-	ns
Fall Time (Note 8)		25	-	6	-	ns
Propagation Delay (Note 8)		25	-	6	-	ns
Overshoot		25	-	12	-	%
-3dB Bandwidth (Note 14)	V _{OUT} = 100mV	25	-	95	-	MHz
Settling Time to 1%	2V Output Step	25	-	50	-	ns
Settling Time to 0.25%	2V Output Step	25	-	100	-	ns
AC CHARACTERISTICS (A _V = +10, R _F = 383Ω)						
Slew Rate (Note 17)		25	350	475	-	V/μs
Full Power Bandwidth (Note 18)		25	28	38	-	MHz
Rise Time (Note 8)		25	-	8	-	ns
Fall Time (Note 8)		25	-	9	-	ns
Propagation Delay (Note 8)		25	-	9	-	ns
Overshoot		25	-	1.8	-	%

V+ = +5V, V- = -5V, R_F = 1k Ω , A_V = +1, R_L = 400 Ω , C_L ≤10pF, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation. (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (°C)	MIN	ТҮР	МАХ	UNITS
-3dB Bandwidth (Note 14)	V _{OUT} = 100mV	25	-	65	-	MHz
Settling Time to 1%	2V Output Step	25	-	75	-	ns
Settling Time to 0.25%	2V Output Step	25	-	130	-	ns
INTERSIL VALUE ADDED SPECIFICATIONS						
Input Noise Voltage (Note 14)	f = 1kHz	25	-	4.5	-	nV/√Hz
+Input Noise Current (Note 14)	f = 1kHz	25	-	2.5	-	pA/√Hz
-Input Noise Current (Note 14)	f = 1kHz	25	-	25	-	pA/√Hz
Input Common Mode Range		Full	±2.5V	-	-	V
Output Current, Short Circuit	$V_{IN} = \pm 2.5 V$, $V_{OUT} = 0 V$	Full	±40	±60	-	mA
Output Current, Disabled (Note 14)	$\overline{\text{DISABLE}} = 0\text{V},$ $\text{V}_{\text{OUT}} = \pm 2.5\text{V}, \text{V}_{\text{IN}} = 0\text{V}$	Full	-	-	2	μΑ
Output Disable Time (Notes 14, 20)		25	-	40	-	μS
Output Enable Time (Notes 14, 21)		25	-	40	-	ns
Supply Voltage Range		25	±5	-	±15	V
Output Capacitance, Disabled (Note 19)	DISABLE = 0V	25	-	6	-	pF
VIDEO CHARACTERISTICS						
Differential Gain (Notes 13, 14)	R _L = 150Ω	25	-	0.03	-	%
Differential Phase (Notes 13, 14)	R _L = 150Ω	25	-	0.03	-	0
Gain Flatness	To 5MHz	25	-	0.1	-	dB

NOTES

2. Suggested V_{OS} Adjust Circuit: The inverting input current (-I_{BIAS}) can be adjusted with an external 10k Ω pot between pins 1 and 5, wiper connected to V+. Since -IBIAS flows through the feedback resistor (RF), the result is an adjustment in offset voltage. The amount of offset voltage adjustment is determined by the value of $R_F (\Delta V_{OS} = \Delta - I_{BIAS} * R_F)$.

3. R_L = 100Ω, V_{IN} = 10V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is considered disabled when -10mV \leq V_{OUT} \leq +10mV.

4. VIN = 0V. This is the maximum current that can be pulled out of the Disable pin with the HA-5020 remaining enabled. The HA-5020 is considered disabled when the supply current has decreased by at least 0.5mA.

5. VOLT switches from -10V to +10V, or from +10V to -10V. Specification is from the 25% to 75% points.

6. FPBW =
$$\frac{\text{Slew Rate}}{2\pi V_{\text{PEAK}}}$$
; V_{PEAK} = 10V.

- 7. R_L = 100Ω, V_{OUT} = 1V. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
- 8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.

9. $V_{IN} = +10V$, Disable = +15V to 0V. Measured from the 50% point of Disable to $V_{OUT} = 0V$.

- 10. VIN = +10V, Disable = 0V to +15V. Measured from the 50% point of Disable to VOUT = 10V.
- 11. $V_{IN} = 0V$, Force V_{OUT} from 0V to ±10V, $t_R = t_F = 50$ ns.
- 12. Measured with a VM700A video tester using a NTC-7 composite VITS.
- 13. See "Typical Performance Curves" for more information.
- 14. V_{CM} = ±2.5V. At -40°C product is tested at V_{CM} = ±2.25V because short test duration does not allow self heating.
- 15. R_L = 100Ω. V_{IN} = 2.5V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is considered disabled when -10mV \leq V_{OUT} \leq +10mV.
- 16. V_{OUT} switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.
- 17. FPBW = $\frac{\text{Slew Rate}}{2\pi V_{\text{PEAK}}}$; $V_{\text{PEAK}} = 2V$.
- 18. V_{IN} = 0V, Force V_{OUT} from 0V to ± 2.5 V, t_R = t_F = 50ns.

7

- 19. $V_{IN} = +2V$, Disable = +5V to 0V. Measured from the 50% point of Disable to $V_{OUT} = 0V$.
- 20. VIN = +2V, Disable = 0V to +5V. Measured from the 50% point of Disable to VOUT = 2V.

Dual-In-Line Plastic Packages (PDIP)

NOTES:

- 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- 6. E and eA are measured with the leads constrained to be perpendicular to datum -C-.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54	BSC	-
e _A	0.300	BSC	7.62	BSC	6
е _В	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
Ν	8	3	٤	3	9

Rev. 0 12/93