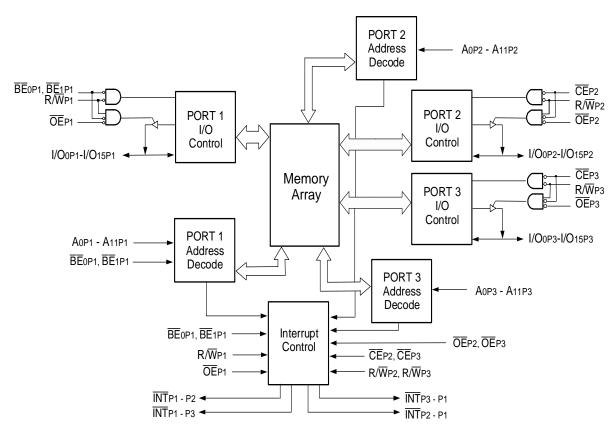


HIGH-SPEED 8K x 16 TriPort STATIC RAM


IDT70P5258ML IDT70P525ML IDT70V525ML

Features

- High-speed access
 - Industrial: 55ns (max.)
- Low-power operation
 - IDT70P5258ML and IDT70P525ML Active: 54mW (typ.)
 Standby: 7.2μW (typ.)
 - IDT70V525ML Active: 450mW (typ.) Standby: 250µW (typ.)

- TriPort architecture allows simultaneous access to the memory from all three ports
- Fully asynchronous operation from each of the three ports: P1, P2, and P3
- IDT70P5258 supports 3.0V and 1.8V I/O's
- Available in 144-ball 0.5mm-pitch fpBGA
- ◆ Industrial temperature range (-40°C to +85°C)
- Greeen parts available, see ordering information

Functional Block Diagram

5681 drw 01

JANUARY 2009

©2009 Integrated Device Technology, Inc.

Description

The IDT70X525X is a high-speed 8K x 16 TriPort Static RAM designed to be used in systems where multiple access into a common RAM is required. This TriPort Static RAM offers increased system performance in multiprocessor systems that have a need to communicate in real time and also offers added benefit for high-speed systems in which multiple access is required in the same cycle.

The IDT70X525X is also designed to be used in systems where onchip hardware port arbitration is not needed. This part lends itself to those systems which cannot tolerate wait states or are designed to be able to externally arbitrated or withstand contention when more than one port simultaneously accesses the same TriPort RAM location.

The IDT70X525X provides three independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location from mutiple ports. An automatic power down feature, controlled by BEo and BE1 on Port 1 and CE on Port 2 and on Port 3, permits the on-chip circuitry of each port to enter a very low power standby power mode.

The IDT70X525X is packaged in a 144-ball 0.5mm-pitch fpBGA.

Pin Configurations (1,2,3)

70(P/V)525XBZ BZ-144

Top View 12/19/03

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
I/O7P3	I/O6P2	I/O4P3	I/O3P2	I/O1P2	ŌĒ _{P3}	R/WP2	NC	A11P2	A 9P2	A7P2	A6P2
B1	B2	В3	B4	B5	B6	B7	B8	В9	B10	B11	B12
I/O7P2	I/O6P3	V _{DD} (1)	I/O2P3	I/O ₀ P3	ŌE _{P2}	<u>СЕ</u> рз	NC	A10P3	A 8P3	А6Р3	A ₅ P ₃
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
I/O _{9P2}	Vss	I/O ₅ P2	I/O ₂ P2	I/O ₀ P2	R/WP3	CE _{P2}	A11P3	A10P2	A8P2	A ₅ P ₂	А4Р3
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
I/O10P3	I/O8P2	I/O5P3	I/O3P3	I/O1P3	Vdd	V _{DD} (1)	Vss	A ₉ P ₃	А7Р3	A ₄ P ₂	АзР2
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
I/O11P3	I/O11P2	I/O8P3	I/O4P2	Vdd	Vss	Vss	Vss	A 0P3	АзРз	A ₂ P ₃	A ₂ P ₂
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
I/O12P3	I/O12P2	I/O ₉ P3	V _{DD} (1)	V _{DD} (1)	Vss	Vss	Vss	Vss	Vdd	A 1P3	A ₀ P ₂
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
I/O15P2	I/O13P3	I/O _{10P2}	I/O13P2	Vss	Vss	Vss	Vss	Vss	Vdd	A1P2	V _{DD} (1)
H1	H2	НЗ	H4	H5	H6	H7	H8	H9	H10	H11	H12
I/O15P3	I/O14P3	I/O14P2	Vdd	Vss	Vss	Vss	Vss	Vdd	Vdd	ĪNT _{P3P1}	ĪNT _{P2P1}
J1	J2	J3	J4	J5	J6	J7	J8	J9	J10	J11	J12
I/O _{2P1}	I/O1P1	Vdd	Vss	Vss	Vss	Vss	Vdd	Vdd	A ₀ P ₁	INT _{P1P3}	INT _{P1P2}
K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	K11	K12
I/O _{3P1}	I/O ₀ P1	I/O4P1	Vss	Vdd	Vss	Vdd	Vdd	A10P1	A 3P1	A2P1	A1P1
L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12
I/O ₆ P1	I/O5P1	I/O8P1	I/O10P1	I/O12P1	I/O14P1	ŌE _{P1}	BE _{0P1}	NC	A9P1	A 7P1	A ₄ P1
M1	M2	МЗ	M4	M5	M6	M7	M8	M9	M10	M11	M12
I/O7P1	Vdd	I/O9P1	I/O11P1	I/O13P1	I/O15P1	R/Wp1	BE _{1P1}	A11P1	A8P1	A6P1	A5P1

NOTES:

1. VDDQ for 70P5258.

5681 drw 02

Pin Configurations^(1,2)

Symbol	Pin Name
A0P1 - A11P1	Address Lines - Port 1 (Input)
A0P2 - A11P2	Address Lines - Port 2 (Input)
A0P3 - A11P3	Address Lines - Port 3 (Input)
VO0P1 - VO15P1	Data I/O - Port 1
I/O0P2 - I/O15P2	Data I/O - Port 2
I/O0P3 - I/O15P3	Data I/O - Port 3
R/WP1	Read/Write - Port 1 (Input)
R/WP2	Read/Write - Port 2 (Input)
R/WP3	Read/Write - Port 3 (Input)
ŒP2	Chip Enable - Port 2 (Input)
CEP3	Chip Enable - Port 3 (Input)
ŌĒP1	Output Enable - Port 1 (Input)
ŌĒP2	Output Enable - Port 2 (Input)
ŌĒP3	Output Enable - Port 3 (Input)
BE0P1	Bank Enable 0 - Port 1 (Input)
BE1P1	Bank Enable 1 - Port 1 (Input)
ĪNTP1 - P2	Interrupt P1 - P2 - Port 1 (Output)
ĪNTP1 - P3	Interrupt P1 - P3 - Port 1 (Output)
ĪNTP2 - P1	Interrupt P2 - P1 - Port 2 (Output)
ĪNTP3 - P1	Interrupt P3 - P1 - Port 3 (Output)
VDD	Power (Input)
VDDQ	Port Power Supply (Input)(3,4)
Vss	Ground (Input)

NOTES:

5681 tbl 01

- All Vob pins must be connected to the power supply.
 All Vss pins must be connected to the ground supply.
 IDT70P5258 only.
 For Port 2 and Port 3.

Capacitance⁽¹⁾ (Ta = +25°C, f = 1.0MHz)

Symbol	Parameter	Port	Conditions ⁽²⁾	Max	Unit
Cin	Input	Port 1	VIN = 3dV	18	pF
	Capacitance	Port 2 & 3	VIN = 3dV	9	pF
Соит	Output	Port 1	Vout = 3dV	20	pF
	Capacitance	Port 2 & 3	Vout = 3dV	11	pF

5681 tbl 03

- This parameter is determined by device characterization but is not production tested.
 3dV references the interpolated capacitance when the input and the output signals switch from 0V to 3V or from 3V to 0V.

Maximum Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	Device	Vss	V _{DD}	
Industrial	-40°C to +85°C	70P525 70P5258	0V	1.8V <u>+</u> 100mV	
		70V525	0V	3.0V <u>+</u> 300mV	

5681 tbl 04

NOTE:

1. This is the parameter Ta. This is the "instant on" case temperature.

Absolute Maximum Ratings(1)

Symbol	Rating	Industrial	Unit
VTERM	Supply Voltage on VDD with Respect to GND	-0.5 to +2.9	V
VTERM	Supply Voltage on VDDQ with Respect to GND	-0.5 to +3.6	V
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to V _{DD} + 0.3 ⁽⁴⁾	V
TBIAS ⁽³⁾	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
NuT	Junction Temperatue	+150	°C
lout (for 70V525)	DC Output Current	50	mA
louт (for 70Р525 and 70Р5258)	DC Output Current	20	mA

5681 tbl 05

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation of the
 device at these or any other conditions above those indicated in the operational sections of this
 specification is not implied. Exposure to absolute maximum rating conditions for extended
 periods may affect reliability.
- 2. VTERM must not exceed VDD + 10% for Port 1 or VDDQ + 10% for Port 2 and Port 3 for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 10% (Port 1) or VDDQ + 10% (Port 2 and Port 3).
- 3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.
- 4. VDDQ + 0.3V for 70P5258.

Recommended DC Operating Conditions

Symbol	Device	Port	Parameter	Min.	Тур.	Max.	Unit	
	70P5258		Supply Voltage	1.7	1.8	1.9		
V _{DD}	70P525	All		1.7	1.8	1.9	V	
	70V525			2.7	3	3.3		
	70P5258	Port 2 & 3		2.7	3	3.3		
VDDQ	70P525	N/A	I/O Supply Voltage ⁽¹⁾				V	
	70V525	N/A			_	_		
Vss	All	All	Ground	0	0	0	٧	
	7005250	Port 1		1.2		V _{DD} +0.2		
.,	70P5258	Port 2 & 3	Louis A. I. Park, Mallana	2	_	VDDQ+0.2	,,	
VIH	70P525	All	Input High Voltage	1.2		V _{DD} +0.2	V	
	70V525	All		2		V _{DD} +0.2		
	7005250	Port 1		-0.2	_	0.4		
	70P5258	Port 2 & 3	Land Land Valland	-0.2	_	0.6		
VIL	70P525	All	Input Low Voltage	-0.2	_	0.4	V	
	70V525	All		-0.2		0.6		

5681 tbl 02

- The supply voltage for all ports on the IDT70P525 and IDT70V525 is supplied by Vob so there are no Vobo pins
 on these devices.
- 2. $VIL \ge -1.5V$ for pulse width less than 10ns.
- 3. VTERM must not exceed VDD + 10% for Port 1 or VDDQ + 10% for Port 2 and Port 3.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,4)

				70P5258 70P525 Ind'l Only		70V525 Ind'l Only		
Symbol	Parameter	Test Condition	Version	Typ. ⁽¹⁾	Max.	Typ. ⁽¹⁾	Max.	Unit
loo	Dynamic Operating Current (Both Ports Active - CMOS Level Inputs)	\overline{CE} = ViL, Outputs Open f = fmAx ⁽²⁾	IND'L L	30	50	150	180	mA
ISB1	Standby Current (Both Ports - CMOS Level Inputs)	$\overline{CE}R$ and $\overline{CE}L = VIH$ $f = f_{MAX}^{(2)}$	IND'L L	.004	.016	5	10	mA
ISB2	Standby Current (One Port - CMOS Level Inputs)	$\overline{CE}"a"=V_{IL}$ and $\overline{CE}"b"=V_{IH}^{(3)}$, Active Port Outputs Open $f=f_{MAX}^{(2)}$	IND'L L	17	28	90	110	mA
ISB3	Full Standby Current (Both Ports - CMOS Level Inputs)	Both Ports $\overline{CE}L$ and $\overline{CE}R \ge VDDQ - 0.2V$, $VIN \ge VDDQ - 0.2V$ or $VIN \le 0.2V$ $f = f_{MAX}^{(2)}$	IND'L L	4	16	84	150	μА
ISB4	Standby Current (One Port - CMOS Level Inputs)	$\overline{\text{CE}}\text{-A}^* \leq 0.2\text{V}$ and $\overline{\text{CE}}\text{-B}^* \geq \text{V}_{\text{DDO}} - 0.2\text{V}^{(3)}$ Vin $\geq \overline{\text{V}}\text{DDO}$ - 0.2V or Vin $\leq 0.2\text{V}$, Active Port Outputs Open $f = f_{\text{MAX}}^{(2)}$	IND'L L	17	28	90	110	mA

NOTES: 5681 tbl 06

- 1. VDD = 1.8V for 70P5258 and 70P525. VDD = 3.0V for 70V525, Ta = +25°C, and are not production tested. IDD DC = 15mA (typ.)
- 2. At f = fmax, address and control lines are cycling at the maximum frequency read cycle of 1/trc, and using "AC Test Conditions".
- 3. For the 70P5258, if Port "A" is Port 1 then Port "B" may be either Port 2 or Port 3. If Port "A" is either Port 2 or Port 3, Port "B" must be Port 1.
- 4. V_{DD} = 1.8V \pm 100mV for 70P525 and 70P5258. V_{DD} = 3.0V \pm 300mV for 70V525.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽²⁾

Symbol	Device	Port	Parameter	Test Conditions	Min.	Мах.	Unit	
	70P5258	All		$V_{DD} = 1.8V$, $V_{IN} = 0V$ to V_{DD}	_	1		
lu	70P525	All	Input Leakage Current	$V_{DD} = 1.8V$, $V_{IN} = 0V$ to V_{DD}	_	1	μΑ	
	70V525	All		$V_{DD} = 3.0V$, $V_{IN} = 0V$ to V_{DD}	_	1		
	70P5258	All		$\overline{CE}x = \overline{BE}x = V_{IH}$, $V_{OUT} = 0V$ to V_{DD}	_	1		
llo	70P525	All	Output Leakage Current	$\overline{CEx} = \overline{BEx} = V_{IH}, V_{OUT} = 0V \text{ to } V_{DD}$	_	1	μΑ	
	70V525	All		$\overline{CEx} = \overline{BEx} = V_{H}, V_{OUT} = 0V \text{ to } V_{DD}$	_	1		
	7005050	Port 1		loL = +0.1mA		0.2	V	
VI-	70P5258	Port 2 & 3	Output Low Valtage	loL = +2mA		0.4		
Vol	70P525	All	Output Low Voltage	loL = +0.1mA		0.2	V	
	70V525	All		loL = +2mA		0.4		
	7005250	Port 1		loн = -0.1mA	1.4	-		
Vou	70P5258	Port 2 & 3	Output High Voltage	loн = -2mA	2.1	-	V	
<u> </u>	70P525	All	Output High Voltage	loн = -0.1mA	1.4			
	70V525	All		IOH = -2mA	2.1			

NOTF:

5681 tbl 07

- 1. At $V_{DD} \le 2.0V$ input leakages are undefined.
- 2. $V_{DD} = 1.8V \pm 100$ mV for 70P525 and 70P5258. $V_{DD} = 3.0V \pm 300$ mV for 70V525.

AC Test Conditions

Input Pulse Levels	GND to 3.0V/GND to 1.8V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V/0.9V
Output Reference Levels	1.5V/0.9V
Output Load	Figures 1, 2 and 3

5681 tbl 08

	3.3V ————————————————————————————————————
DATAout 435Ω	30pF
	5681 drw 05

Figure 2. AC Output Test Load for the 70V525

 3.0V
 1.8V

 R1
 1022 Ω 13500 Ω

 R2
 729 Ω 10800 Ω

5681 tbl 09

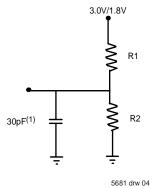


Figure 1. AC Output Test Load for the 70P525 and 70P5258

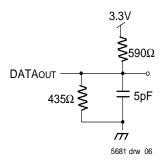
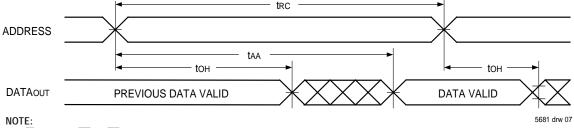
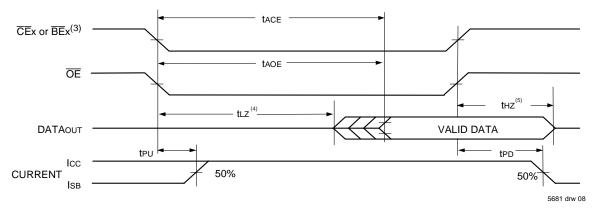



Figure3. AC Output Test Load for the 70V525 (for thz, tLx, twz, tow)

Timing Waveform of Read Cycle No. 1, Any Port(1)


1. $R/\overline{W} = VIH \text{ and } \overline{CE} \text{ (or } \overline{BE}x) = VIL.$

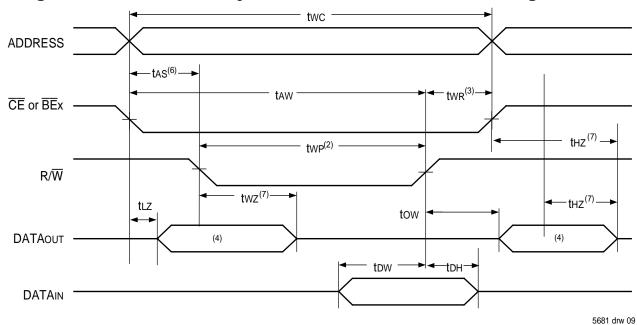
AC Electrical Characteristics Over the Operating Temperature and Supply Voltage

		70X525X Ind'l Only					
Symbol	Parameter	Min.	Max.	Unit			
READ CYCLE	READ CYCLE						
trc	Read Cycle Time	55		ns			
taa	Address Access Time		55	ns			
tace	Chip Enable Access Time	_	55	ns			
taoe	Output Enable Access Time	_	30	ns			
tон	Output Hold from Address Change	5	-	ns			
tLZ	Output Low-Z Time ^(1,2)	5	_	ns			
tHZ	Output High-Z Time ^(1,2)		25	ns			
tpu	Chip Enable to Power Up Time (2)	0		ns			
tpd	Chip Disable to Power Down Time ⁽²⁾		55	ns			

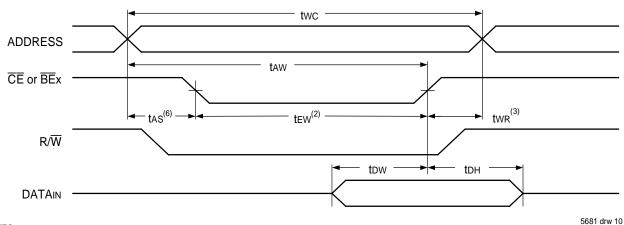
- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. This parameter is guaranteed by device characterization but is not production tested.

Timing Waveform of Read Cycle No. 2, Any Port (1, 2)

- 1. $R/\overline{W} = V_{IH}$ for Read Cycles.
- 2. Addresses valid prior to or coincident with $\overline{\sf CE}$ (or $\overline{\sf BEx}$) transition LOW.
- 3. $\overline{\text{CE}}$ for Port 2 or Port 3, $\overline{\text{BE}}$ x for Port 1.
- 4. Timing depends on which signal is asserted last, $\overline{\text{CE}}$ (or $\overline{\text{BE}}\text{x})$ or $\overline{\text{OE}}.$
- 5. Timing depends on which signal is deasserted first, \overline{CE} (or \overline{BEx}) or \overline{OE} .


AC Electrical Characteristics Over the Operating Temperature and Supply Voltage

		70X525X Ind'l Only		
Symbol	Parameter	Min.	Max.	Unit
WRITE CYCLI				
twc	Write Cycle Time	55		ns
tew	Chip Enable to End-of-Write	45		ns
taw	Address Valid to End-of-Write	45		ns
tas	Address Set-up Time	0	_	ns
twp	Write Pulse Width ⁽³⁾	40		ns
twr	Write Recovery Time	0	_	ns
tow	Data Valid to End-of-Write	30		ns
tHZ	Output High-Z Time (1,2)	_	25	ns
toн	Data Hold Time	0	_	ns
twz	Write Enable to Output in High-Z ^(1,2)		25	ns
tow	Output Active from End-of-Write (1,2)	0	_	ns

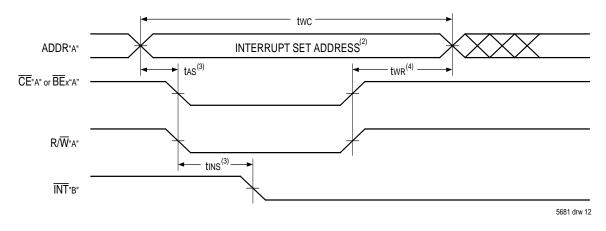

5681 tbl 11

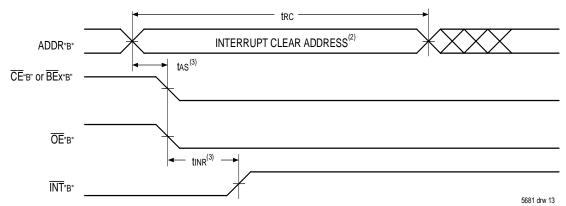
- Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
 This parameter is guaranteed by device characterization but is not production tested.

Timing Waveform of Write Cycle No. 1, R/W Controlled Timing (5)

Timing Waveform of Write Cycle No. 2, **CE** Controlled Timing^(1,5)

- 1. R/\overline{W} or \overline{CE} (or $\overline{BE}x$) = VIH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a \overline{CE} (or \overline{BEx}) = VIL and a R/\overline{W} = VIL.
- 3. two is measured from the earlier of \overline{CE} (or \overline{BEx}) or $R\overline{W} = VIH$ to the end of write cycle.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE (or BEx) LOW transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$ (or $\overline{\text{BE}}\text{x}$) or R/\overline{W} .
- 7. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 3). This parameter is guaranteed but is not production tested.


AC Electrical Characteristics Over the


Operating Temperature and Supply Voltage Range

		70X525X Ind'l Only						
Symbol	Parameter	Min.	Max.	Unit				
INTERRUPT T	ERRUPT TIMING							
tas	Address Set-up Time	0	_	ns				
twr	Write Recovery Time	0	_	ns				
tins	Interrupt Set Time	-	45	ns				
tinr	Interrupt Reset Time	_	45	ns				

5681 tbl 12

Waveform of Interrupt Timing(1)

- 1. If Port A is Port 1, Port B may be either Port 2 or Port 3. If Port A is either Port 2 or Port 3, Port B must be Port 1.
- 2. See Interrupt Truth Table II.
- Timing depends on which enable signal (CE or RW) is asserted last.
 Timing depends on which enable signal (CE or RW) is de-asserted first.

Functional Description

The IDT70X525X provides three ports with separate control, address, and I/O pins that permit independent access for reads or writes to the two banks of memory. These devices have an automatic power down feature controlled by \overline{BE} 0 and \overline{BE} 1 on Port 1 and \overline{CE} 0 on Port 2 and Port 3. The \overline{CE} (or $\overline{BE}x$) controls on-chip power down circuitry—that permits the respective port to go into standby mode when not selected (\overline{CE} or $\overline{BE}x$ = ViH). When Port 1 is enabled, it has access to the full memory. When Port 2 is active it has access to Bank 1 of the memory. When Port 3 is active it has access to Bank 2 of the memory. See Truth Table I for a description of the Read/Write operation.

Truth Table I - Read/Write Control

	BE ₀	BE ₁	R/W	CE	ŌĒ	D0-D15	Function	
PORT 1	Н	Н	Х	Х	Х	Z	Port Deselected	
	L	Н	L	Х	Х	DATAIN	Data on port written into Memory Bank 0	
	L	Н	Н	Х	L	DATA out	Data in Memory Bank 0 output on port	
	Н	L	L	Х	Х	DATAIN	Data on port written into Memory Bank 1	
	Н	L	Н	Х	L	DATA out	Data in Memory Bank 1 output on port	
	Χ	Х	Х	Х	Η	Z	Outputs Disabled	
	L	L	Х	Х	Х	Х	Not Allowed	
DODT 2	Х	Х	Х	Н	Х	Z	Port Deselected	
PORT 2 or PORT 3	Х	Х	L	L	Х	DATAIN	Data on port written into Memory Bank (2)	
	Х	Х	Н	L	L	DATAоит	Data in Memory Bank ⁽²⁾ output on port	
	Х	Х	Х	Х	Н	Z	Outputs Disabled	
	Н	Н	Х	Н	Х	Z	$\overline{BE}0 = \overline{BE}1 = \overline{CE}P3 = VIH$, Sleep mode	

5681 tbl 13

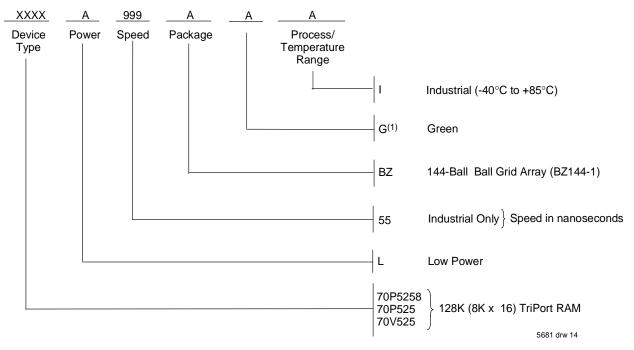
- 1. Both \overline{BE}_0 , and \overline{BE}_1 cannot be active ($\overline{BE}x = VIL$) simultaneously.
- 2. Memory Bank 0 for Port 2. Memory Bank 1 for Port 3.

Interrupts

If the user chooses the interrupt function, a memory location (mailbox or message center) is assigned to each port. Interrupt P1 - P2 of Port 1 ($\overline{\text{INT}}$ P1 - P2) is asserted when Port 2 writes to memory location FFE (HEX), where a write is defined as $\overline{\text{CE}} = R/\overline{W} = V_{\text{IL}}$ per Truth Table II. Port 1 clears the interrupt by accessing address location FFE when $\overline{\text{BE}}0 = V_{\text{IL}}$, R/\overline{W} is a "don't care". Interrupt P1 - P3 of Port 1 ($\overline{\text{INT}}$ P1 - P3) is asserted when Port 3 writes to memory location FFE (HEX), where a write is defined as $\overline{\text{CE}} = R/\overline{W} = V_{\text{IL}}$. Port 1 clears the interrupt by accessing address location FFE

when $\overline{BE}_1 = V_{IL}$, R/\overline{W} is a "don't care". Port 2's interrupt flag (\overline{INT}_{P^2-P1}) is asserted when Port 1 writes to memory location FFF (HEX), where a write is defined as $\overline{BE}_0 = R/\overline{W} = V_{IL}$. Port 2 clears the interrupt by accessing address location FFF when $\overline{CE} = V_{IL}$, R/\overline{W} is a "don't care". Likewise, Port 3's interrupt flag (\overline{INT}_{P^3-P1}) is asserted when Port 1 writes to memory location FFF (HEX), where a write is defined as $\overline{BE}_1 = R/\overline{W} = V_{IL}$. Port 3 clears the interrupt by accessing address location FFF when $\overline{CE} = V_{IL}$, R/W is a "don't care".

Truth Table II - Interrupt Flag


Port 1							Port 2 or 3					
R/W	BE ₀	BE ₁	ŌĒ	A11 - A0	INT P1 - P2	ĪNT P1 - P3	R/W	CE	ŌĒ	A11 - A0	INT Px - P1	Function
L	L	Н	Х	FFF	Х	Х	Х	Х	Х	Х	L	Set P2 INT Flag
Х	Х	Х	Х	Х	Х	Х	Х	L	L	FFF	Н	Reset P2 INT Flag
L	Н	L	Х	FFF	Х	Х	Х	Х	Х	Х	L	Set P3 INT Flag
Х	Х	Х	Х	Х	Х	Х	Х	L	L	FFF	Н	Reset P3 INT Flag
Х	Х	Х	Х	Х	L	Х	L	L	Х	FFE	Х	Set P1 INTP1-P2 Flag ⁽¹⁾
Х	L	Н	L	FFE	Н	Х	Χ	Х	Х	Х	Х	Reset P1 INTP1-P2 Flag
Х	Х	Χ	Х	Х	Χ	L	L	L	Х	FFE	Х	Set P1 INTP1-P3 Flag ⁽²⁾
Х	Н	L	L	FFE	Х	Н	Х	Х	Х	Х	Х	Reset P1 INTP1-P3 Flag

NOTE:

5681 tbl 14

- 1. Port 2 sets the \overline{INT}_{P1-P2} flag on Port 1 so all signals refer to Port 2.
- 2. Port 3 sets the INTP1 P3 flag on Port 1 so all signals refer to Port 3.

Ordering Information

NOTE:

1. Green parts available. For specific speeds, packages and powers contact your sales office.

Datasheet Document History

10/14/03: Initial datasheet

03/23/04: Page 7 Corrected to H spec min to 5 ns in AC Electrical Characteristics Table 10

5/26/05: Page 1 Added green availability to features

Page 13 Added green indicator to ordering information Page 1 & 13 Replaced old logo ® with new TM logo

 $05/08/06: \qquad \text{Page 5} \quad \text{Updated V} \\ \text{TERM in Absolute Maximum Ratings table and added footnote 3 \& 4} \\$

07/25/08: Page 6 Corrected a typo in the DC Chars table 01/19/09: Page 14 Removed "IDT" from orderable part number

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Boad

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200

fax: 408-284-2775 www.idt.com for Tech Support: 408-284-2794 DualPortHelp@idt.com