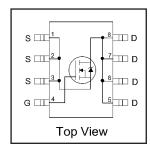
International Rectifier

SMPS MOSFET

IRF7471PbF

Applications


- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Computer Processor Power
- Lead-Free

HEXFET® Power MOSFET

V_{DSS}	R _{DS(on)} max	I _D
40V	13m Ω	10A

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)}
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-Source Voltage	40	V
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	10	
$I_D @ T_A = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	8.3	Α
I _{DM}	Pulsed Drain Current⊕	83	
P _D @T _A = 25°C	Maximum Power Dissipation③	2.5	W
P _D @T _A = 70°C	Maximum Power Dissipation③	1.6	W
	Linear Derating Factor	0.02	mW/°C
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient	_	50	°C/W

IRF7471PbF

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	_	0.043	—	V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance	_	9.5	13	mΩ	V _{GS} = 10V, I _D = 10A ③
R _{DS(on)}			12	16	11122	$V_{GS} = 4.5V, I_D = 8.0A$ ③
V _{GS(th)}	Gate Threshold Voltage	1.0	_	3.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
lana	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 32V, V_{GS} = 0V$
DSS		_		100	μΛ	$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	- A	V _{GS} = 16V
000	Gate-to-Source Reverse Leakage			-200 nA		V _{GS} = -16V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

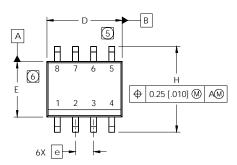
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	22	_	_	S	$V_{DS} = 20V, I_D = 8.0A$
Qg	Total Gate Charge		21	32		$I_D = 8.0A$
Q _{gs}	Gate-to-Source Charge		7.2	11	nC	$V_{DS} = 20V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		8.2	12		V _{GS} = 4.5V ③
Qoss	Output Gate Charge		23	35		V _{GS} = 0V, V _{DS} = 16V
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 20V$
t _r	Rise Time		2.7		ns	$I_{D} = 8.0A$
t _{d(off)}	Turn-Off Delay Time		15		113	$R_G = 1.8\Omega$
t _f	Fall Time		4.1	_		V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		2820	_		$V_{GS} = 0V$
Coss	Output Capacitance	l —	700			V _{DS} = 20V
C _{rss}	Reverse Transfer Capacitance		46		рF	f = 1.0MHz

Avalanche Characteristics

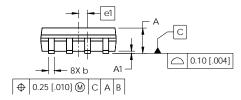
Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		300	mJ
I _{AR}	Avalanche Current①		8.0	Α

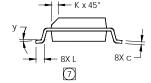
Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			2.3		MOSFET symbol	
	(Body Diode)	-	_	2.3	A	showing the	
I _{SM}	Pulsed Source Current			00		integral reverse	
	(Body Diode) ①	-	_	83		p-n junction diode.	
V_{SD}	Diode Forward Voltage	—	0.80	1.3	٧	$T_J = 25$ °C, $I_S = 8.0$ A, $V_{GS} = 0$ V ③	
V SD	Diode i orward voltage	_	0.65			$T_J = 125$ °C, $I_S = 8.0$ A, $V_{GS} = 0$ V	
t _{rr}	Reverse Recovery Time		69	100	ns	$T_J = 25^{\circ}C$, $I_F = 8.0A$, $V_R = 20V$	
Q _{rr}	Reverse Recovery Charge		130	200	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time	_	73	110	ns	$T_J = 125$ °C, $I_F = 8.0$ A, $V_R = 20$ V	
Q _{rr}	Reverse Recovery Charge		160	240	nC	di/dt = 100A/µs ③	

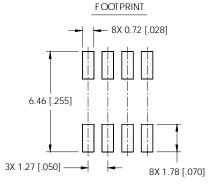

International

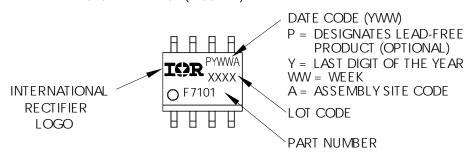
TOR Rectifier


IRF7471PbF


SO-8 Package Outline

Dimensions are shown in millimeters (inches)

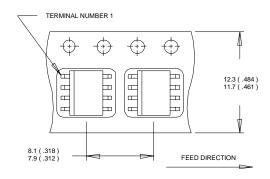

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	


NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- ① DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

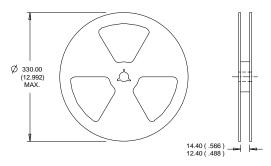


IRF7471PbF

International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)


NOTES:

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 9.4mH $R_G=25\Omega,\ I_{AS}=8.0A.$
- ③ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- ④ When mounted on 1 inch square copper board.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

