International Rectifier

AUTOMOTIVE MOSFET

IRLR3915PbFIRLU3915PbF

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon limited)	61	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (See Fig.9)	43	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package limited)	30	
I _{DM}	Pulsed Drain Current ①	240	
P _D @T _C = 25°C	Power Dissipation	120	W
	Linear Derating Factor	0.77	W/°C
V _{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy®	200	mJ
E _{AS} (6 sigma)	Single Pulse Avalanche Energy Tested Value®	600	
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy®		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.3	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient	110		

HEXFET(R) is a registered trademark of International Rectifier.

IRLR/U3915PbF

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12	14	mΩ	V _{GS} = 10V, I _D = 30A ⊕
			14	17		V _{GS} = 5.0V, I _D = 26A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = 10V, I_D = 250\mu A$
9 _{fs}	Forward Transconductance	42			S	$V_{DS} = 25V, I_{D} = 30A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V, V_{GS} = 0V$
				250	μΑ	$V_{DS} = 55V, V_{GS} = 0V, T_J = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
'GSS	Gate-to-Source Reverse Leakage			-200	IIA	$V_{GS} = -16V$
Qg	Total Gate Charge		61	92		I _D = 30A
Q _{gs}	Gate-to-Source Charge		9.0	14	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		17	25		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		7.4		no	$V_{DD} = 28V$
t _r	Rise Time		51		ns	$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time		83			$R_G = 8.5\Omega$
t _f	Fall Time		100			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5			Between lead,
			7.0		nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		1870			$V_{GS} = 0V$
Coss	Output Capacitance		390			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		74		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		2380			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		290			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ®		540			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions						
Is	Continuous Source Current			61		MOSFET symbol						
	(Body Diode)	6		61	Α	showing the						
I _{SM}	Pulsed Source Current		0.40	0.40		0.40	0.40	0.40	0.40	0.40		integral reverse
	(Body Diode) ①		- 240		p-n junction diode.							
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 30A$, $V_{GS} = 0V$ ④						
t _{rr}	Reverse Recovery Time		62	93	ns	$T_J = 25^{\circ}C$, $I_F = 30A$, $V_{DD} = 25xjkl V$						
Q _{rr}	Reverse Recovery Charge		110	170	nC	di/dt = 100A/μs ④						
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)										

IRLR/U3915PbF

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information

International IOR Rectifier

IRLR/U3915PbF

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES: 1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_{J} = 25$ °C, $L = 0.45 \text{mH}, R_G = 25\Omega, I_{AS} = 30A, V_{GS} = 10V.$ Part not recommended for use above this value.
- $\ensuremath{ \Im \ } I_{SD} \leq 30 A, \ di/dt \leq 280 A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ $T_J \leq 175^{\circ}C.$
- 4 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ① This value determined from sample failure population. 100% tested to this value in production.
- ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

> International IOR Rectifier