SWITCHMODE™ Power Rectifier 60 V, 30 A

Features and Benefits

- Low Forward Voltage
- Low Power Loss/High Efficiency
- High Surge Capacity
- 175°C Operating Junction Temperature
- 30 A Total (15 A Per Diode Leg)
- Guard-Ring for Stress Protection
- These are Pb–Free Devices

Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:

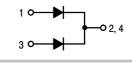
- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight (Approximately): 1.5 Grams (I²PAK)

1.7 Grams (D²PAK)

1.9 Grams (TO-220 and TO-220FP)

- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

MAXIMUM RATINGS


Please See the Table on the Following Page


ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 30 AMPERES, 60 VOLTS

TO-220

CASE 221A

PLASTIC

STYLE 6

I²PAK (TO-262) CASE 418D PLASTIC STYLE 3

TO-220 CASE 221D

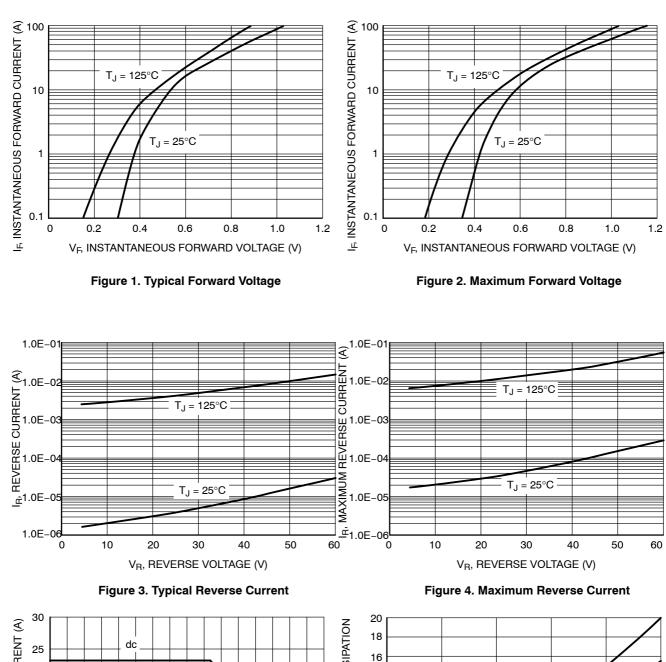
STYLE 3

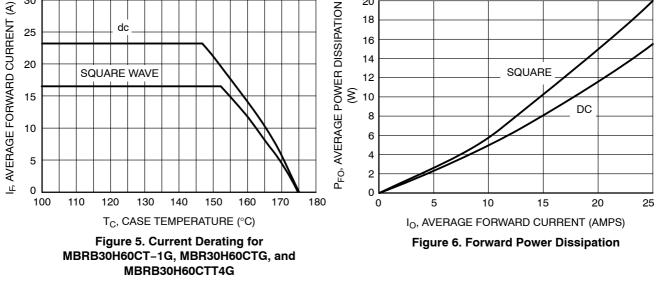
D²PAK CASE 418B

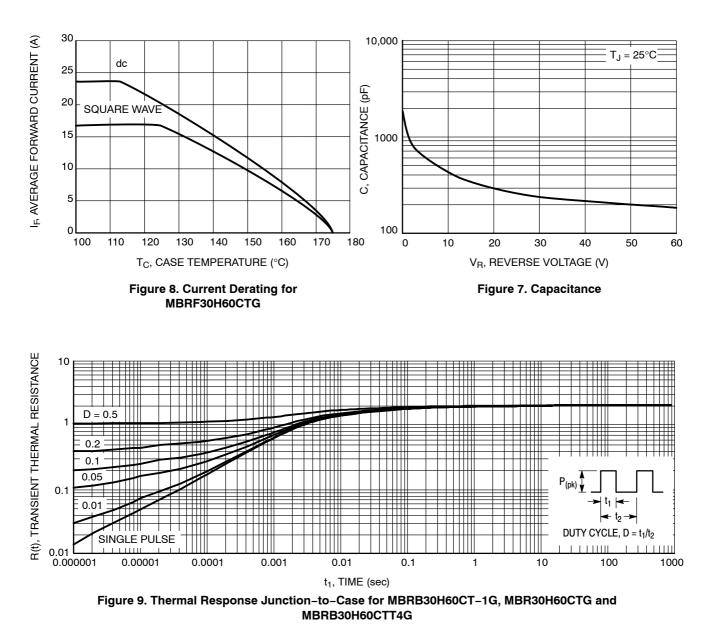
ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS (Per Diode Leg)


Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (Rated V_R) T _C = 159°C		I _{F(AV)}	15	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)		I _{FRM}	30	A
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	260	A
Operating Junction Temperature (Note 1)		TJ	–55 to +175	°C
Storage Temperature		T _{stg}	- 55 to +175	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10,000	V/μs
Controlled Avalanche Energy (see test conditions in Figures 11 and 12)		W _{AVAL}	350	mJ
ESD Ratings: Machine Model = C Human Body Model = 3B			> 400 > 8000	V
HERMAL CHARACTERISTICS		•		
Maximum Thermal Resistance (MBRB30H60CT-1G and MBR30H60 (MBRF30H60CTG) (MBRB30H60CTTRG)	CTG) – Junction-to-Case – Junction-to-Ambient – Junction-to-Case – Junction-to-Case	R _{θJC} R _{θJA} R _{θJC} R _{θJC}	2.0 70 4.4 1.6	°C/W
ELECTRICAL CHARACTERISTICS	3,		· · · · · ·	
Maximum Instantaneous Forward Voltage (Note 2) ($I_F = 15 \text{ A}, T_C = 25^{\circ}\text{C}$)		VF	0.62	V


$(I_F = 15 \text{ A}, T_C = 25^{\circ}\text{C})$ $(I_F = 15 \text{ A}, T_C = 125^{\circ}\text{C})$ $(I_F = 30 \text{ A}, T_C = 25^{\circ}\text{C})$	۴F	0.62 0.56 0.78	v
$(I_{\rm F} = 30 \text{ A}, T_{\rm C} = 125^{\circ}\text{C})$		0.71	
Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	0.3 45	mA


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

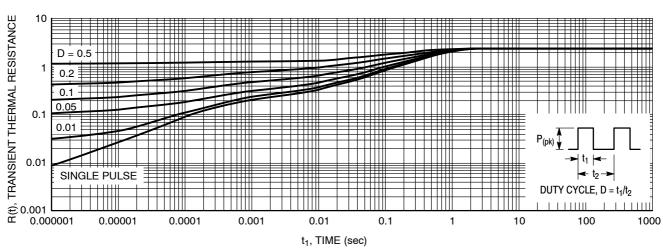


Figure 10. Thermal Response Junction-to-Case for MBRF30H60CTG

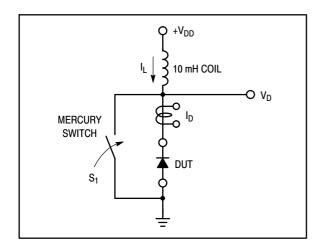


Figure 11. Test Circuit

The unclamped inductive switching circuit shown in Figure 11 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite component resistances. Assuming the component resistive

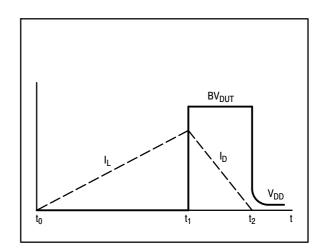


Figure 12. Current-Voltage Waveforms

elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S₁ was closed, Equation (2).

EQUATION (1):

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT}} \right)$$

EQUATION (2):

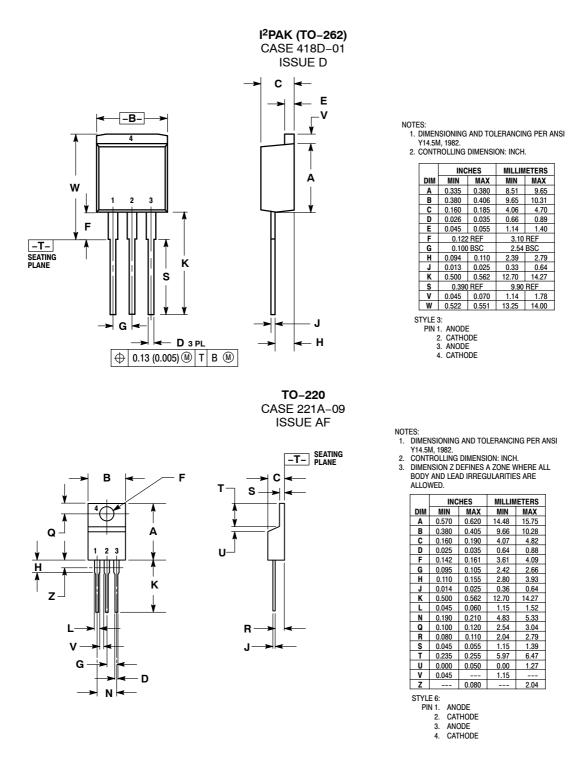
$$W_{AVAL} \approx \frac{1}{2} U_{LPK}^2$$

MARKING DIAGRAMS

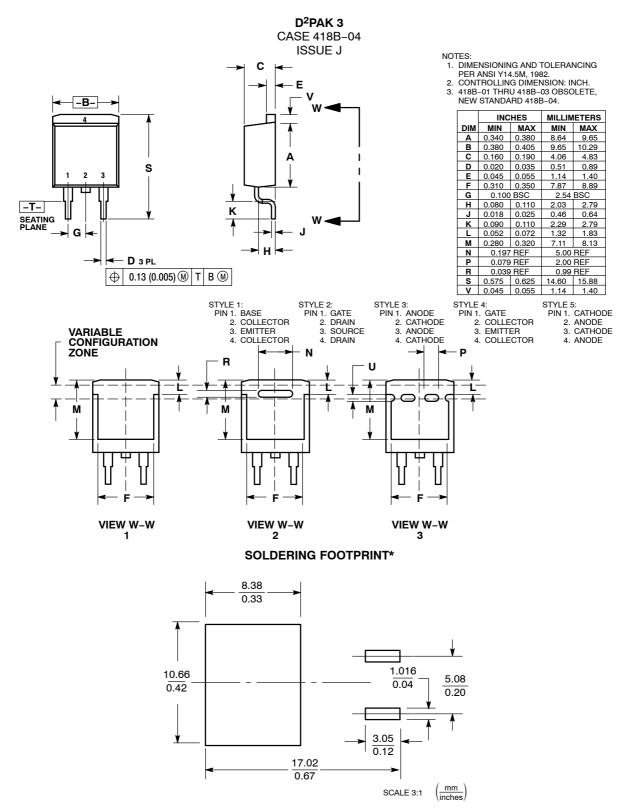
TO-220 TO-220 D²PAK CASE 221D I²PAK (TO-262) CASE 221A CASE 418B CASE 418D AYWW AYWW AYWW B30H60G AYWW B30H60G B30H60G AKA AKA B30H60G AKA रारार AKA ПП B30H60 = Device Code А = Assembly Location Y = Year ww = Work Week

= Pb-Free Package = Polarity Designator

G

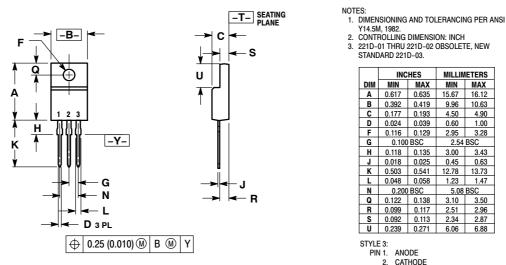

AKA

ORDERING INFORMATION


Device	Package	Shipping [†]	
MBRB30H60CT-1G	TO-262 (Pb-Free)	50 Units / Rail	
MBR30H60CTG	TO-220 (Pb-Free)	50 Units / Rail	
MBRF30H60CTG	TO-220FP (Pb-Free)	50 Units / Rail	
MBRB30H60CTT4G	D ² PAK (Pb-Free)	800 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TO-220 FULLPAK[™] CASE 221D-03 ISSUE J

CATHOE
ANODE

FULLPAK and SWITCHMODE are trademarks of Semiconductor Components Industries, LLC.

ON Semiconductor and IIIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use poyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative