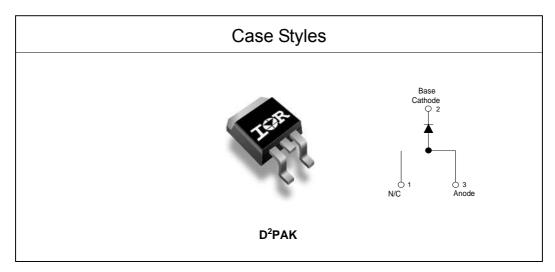
International TOR Rectifier

STPS20L15GPbF

SCHOTTKY RECTIFIER

20 Amps

 $I_{F(AV)}$ = 20 Amp V_R = 15V


Major Ratings and Characteristics

Cha	racteristics	Values	Units
I _{F(AV)}	Rectangular waveform	20	А
V _{RRN}	1	15	V
I _{FSM}	@tp = 5 µs sine	700	Α
V _F	@19 Apk, T _J =125°C (Typical)	0.25	V
T _J	range	-55 to 125	°C

Description/ Features

The Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

- 125°C T_I operation (V_R < 5V)
- Center tap module
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Lead-Free ("PbF" suffix)

Document Number: 94326 www.vishay.com

STPS20L15GPbF

Bulletin PD-21049 rev. B 01/07

International IOR Rectifier

Voltage Ratings

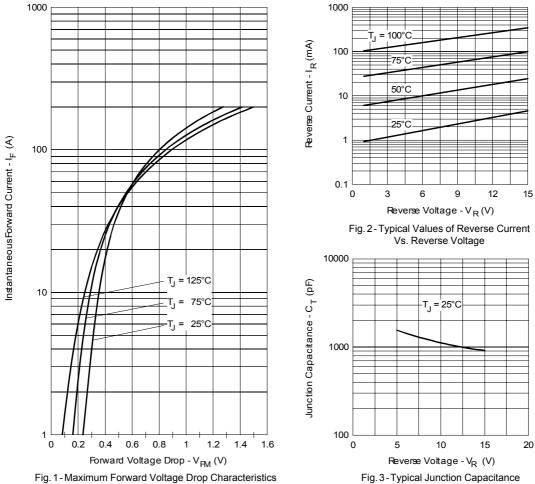
	Part number		STPS20L15GPbF
V _R	Max. DC Reverse Voltage (V)	@ T _J = 100 °C	4=
V _{RWM}	Max. Working Peak Reverse Voltage (V)	@ T _J = 100 °C	15

Absolute Maximum Ratings

	Parameters	Values	Units	Conditions	
I _{E(AV)}	Max. Average Forward Current	20	Α	50% duty cycle @ T _C = 85°C, rectangular wave form	
` ′	*See Fig. 5				
I _{FSM}	Max. Peak One Cycle Non-Repetitive	700	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with
	Surge Current *See Fig. 7	330		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied
E _{AS}	Non-RepetitiveAvalancheEnergy	10	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 \text{Amps}, L = 6 \text{mH}$	
I _{AR}	Repetitive Avalanche Current	2	Α	Current decaying linearly to zero in 1 µsec	
				Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typical	

Electrical Specifications

Parameters		Val	ues	Units	C	Conditions	
			Тур.	Max.			
V _{FM}	Forward Voltage Drop		-	0.41	٧	@ 19A	T,= 25 °C
	* See Fig. 1	(1)	-	0.52	V	@ 40A	1, 20 0
			0.25	0.33	V	@ 19A	T, = 125 °C
			0.37	0.50	V	@ 40A	1 _J = 125 0
I _{RM}	Reverse Leakage Current		-	10	mA	T _J = 25 °C	V _P = rated V _P
	* See Fig. 2	(1)	-	600	mA	T _J = 100 °C	V _R - rated V _R
V _{F(TO}	F(TO) Threshold Voltage		0.1	82	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance		7.	6	mΩ		
C _T	Max. Junction Capacitance		-	2000	pF	$V_R = 5V_{DC}$, (t	est signal range 100Khz to 1Mhz) 25°C
L _s	S Typical Series Inductance		8	-	nΗ	Measured lea	ad to lead 5mm from package body
dv/dt	dt Max. Voltage Rate of Change		100	000	V/ µs	(Rated V _R)	


(1) Pulse Width < 300 μ s, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		Values	Units	Conditions
T _J	Max. Junction Temperature Range		-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 150	°C	
R _{thJC}	Max. Thermal Resistance Junction to Case		1.5	°C/W	DCoperation *See Fig. 4
R _{thCS}	Typical Thermal Resistant Case to Heatsink	е	0.50	°C/W	Mounting surface, smooth and greased For TO-220
R _{thJA}	Max. Thermal Resistance		40	°C/W	DC operation
	Junction to Ambient				For D ² Pak
wt	Approximate Weight		2(0.07)	g(oz.)	
Т	Mounting Torque	Min.	6(5)	Kg-cm	Non-lubricated threads
		Max.	12(10)	(lbf-in)	
	Marking Device		STPS20	L15G	Case style D ² Pak

www.vishay.com 2 Document Number: 94326

Bulletin PD-21049 rev. B 01/07

Vs. Reverse Voltage

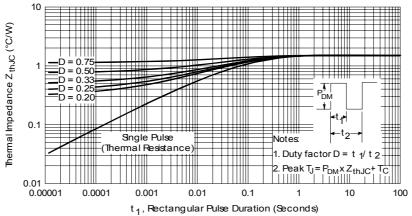


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

STPS20L15GPbF

Bulletin PD-21049 rev. B 01/07

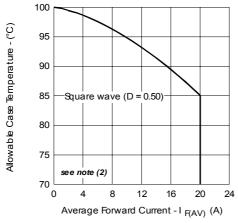


Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current

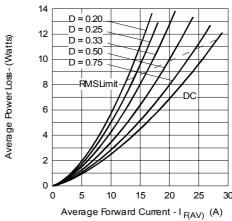
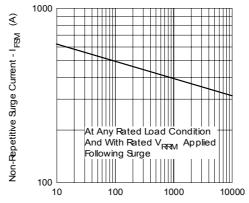
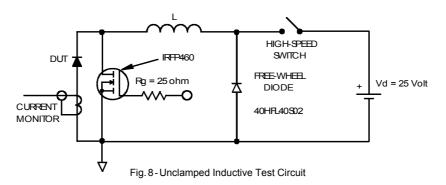




Fig. 6-Forward Power Loss Characteristics

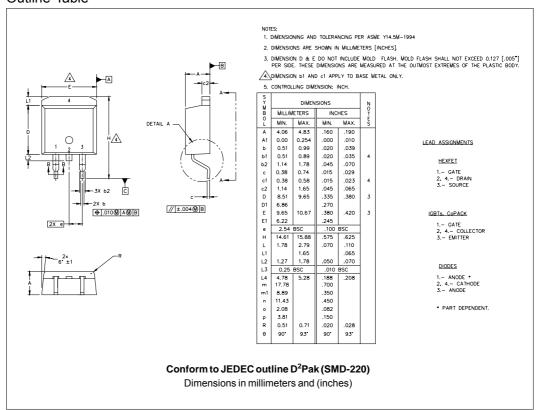
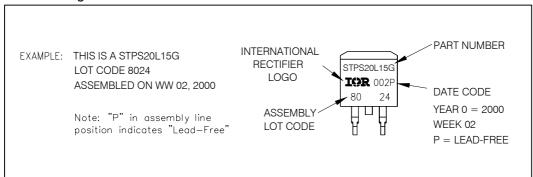
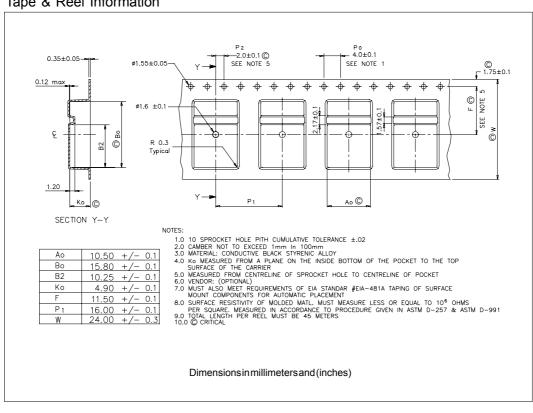

Square Wave Pulse Duration - t_p (microsec)

Fig. 7 - Maximum Non-Repetitive Surge Current

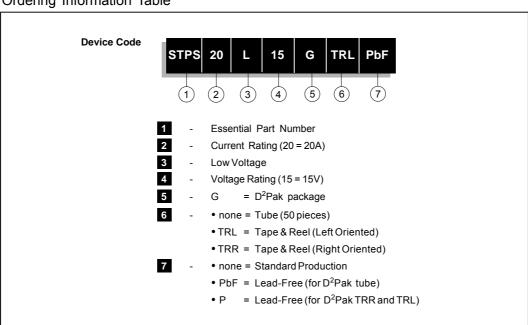


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\label{eq:pd} \operatorname{\mathsf{Pd}}\operatorname{\mathsf{-Forward}}\operatorname{\mathsf{Power}}\operatorname{\mathsf{Loss}}\operatorname{\mathsf{=}}\operatorname{\mathsf{I}}_{\operatorname{\mathsf{F}}(\operatorname{\mathsf{AV}})}\operatorname{\mathsf{x}}\operatorname{\mathsf{V}}_{\operatorname{\mathsf{FM}}}\operatorname{\textcircled{\textcircled{\scriptsize0}}}(\operatorname{\mathsf{I}}_{\operatorname{\mathsf{F}}(\operatorname{\mathsf{AV}})}/\operatorname{\mathsf{D}}) \ \ (\operatorname{\mathsf{see}}\operatorname{\mathsf{Fig}}.6);$ $Pd_{REV} = Inverse Power Loss = V_{R1} x I_{R} (1 - D); I_{R} @ V_{R1} = 80\% rated V_{R}$

Outline Table



Part Marking Information


Bulletin PD-21049 rev. B 01/07

Tape & Reel Information

Bulletin PD-21049 rev. B 01/07

Ordering Information Table

Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level and Lead-Free.
Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

01/07

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07